Skip to main content Accessibility help

Who will benefit from computerized cognitive remediation therapy? Evidence from a multisite randomized controlled study in schizophrenia

  • Shuping Tan (a1), Xiaolin Zhu (a1), Hongzhen Fan (a1), Yunlong Tan (a1), Fude Yang (a1), Zhiren Wang (a1), Yanli Zhao (a1), Fengmei Fan (a1), Junhua Guo (a2), Zhanjiang Li (a2), Wenxiang Quan (a3), Xiangqun Wang (a3), Clare Reeder (a4), Dongfeng Zhou (a3), Yizhuang Zou (a1) and Til Wykes (a4) (a5)...



Computerized cognitive remediation therapy (CCRT) is generally effective for the cognitive deficits of schizophrenia. However, there is much uncertainty about what factors mediate or moderate effectiveness and are therefore important to personalize treatment and boost its effects.


In total, 311 Chinese inpatients with Diagnostic and Statistical Manual of Mental Disorders-IV schizophrenia were randomized to receive CCRT or Active control for 12 weeks with four to five sessions per week. All participants were assessed at baseline, post-treatment and 3-month follow-up. The outcomes were cognition, clinical symptoms and functional outcomes.


There was a significant benefit in the MATRICS Consensus Cognitive Battery (MCCB) total score for CCRT (F1,258 = 5.62; p = 0.02; effect size was 0.27, 95% confidence interval 0.04–0.49). There were no specific moderators of CCRT improvements. However, across both groups, Wisconsin Card Sort Test improvement mediated a positive effect on functional capacity and Digit Span benefit mediated decreases in positive symptoms. In exploratory analyses younger and older participants showed cognitive improvements but on different tests (younger on Symbol Coding Test, while older on the Spatial Span Test). Only the older age group showed MSCEIT benefits at post-treatment. In addition, cognition at baseline negatively correlated with cognitive improvement and those whose MCCB baseline total score was around 31 seem to derive the most benefit.


CCRT can improve the cognitive function of patients with schizophrenia. Changes in cognitive outcomes also contributed to improvements in functional outcomes either directly or solely in the context of CCRT. Age and the basic cognitive level of the participants seem to affect the cognitive benefits from CCRT.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Who will benefit from computerized cognitive remediation therapy? Evidence from a multisite randomized controlled study in schizophrenia
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Who will benefit from computerized cognitive remediation therapy? Evidence from a multisite randomized controlled study in schizophrenia
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Who will benefit from computerized cognitive remediation therapy? Evidence from a multisite randomized controlled study in schizophrenia
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Author for correspondence: Shuping Tan, E-mail: and Yizhuang Zou, E-mail:


Hide All

These authors contributed equally to this work.



Hide All
American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders, 4th Edn. Washington: American Psychiatric Association.
Bell, MD, Tsang, HW, Greig, T and Bryson, G (2007) Cognitive predictors of symptom change for participants in vocational rehabilitation. Schizophrenia Research 96, 162168.
Bell, MD, Choi, KH, Dyer, C and Wexler, BE (2014) Benefits of cognitive remediation and supported employment for schizophrenia patients with poor community functioning. Psychiatric Services 65, 469475.
Bellucci, DM, Glaberman, K and Haslam, N (2003) Computer-assisted cognitive rehabilitation reduces negative symptoms in the severely mentally ill. Schizophrenia Research 59, 225232.
Best, MW, Milanovic, M, Iftene, F and Bowie, CR (2019) A randomized controlled trial of executive functioning training compared with perceptual training for schizophrenia Spectrum disorders: effects on neurophysiology, neurocognition, and functioning. American Journal of Psychiatry 176, 297306.
Buonocore, M, Spangaro, M, Bechi, M, Baraldi, MA, Cocchi, F, Guglielmino, C, Bianchi, L, Mastromatteo, A, Bosia, M and Cavallaro, R (2018) Integrated cognitive remediation and standard rehabilitation therapy in patients of schizophrenia: persistence after 5 years. Schizophrenia Research 192, 335339.
Bürki, CN, Ludwig, C, Chicherio, C and de Ribaupierre, A (2014) Individual differences in cognitive plasticity: an investigation of training curves in younger and older adults. Psychological Research 78, 821835.
Caruso, DR, Mayer, JD and Salovey, P (2002) Relation of an ability measure of emotional intelligence to personality. Journal of Personality Assessment 79, 306320.
Cella, M and Wykes, T (2019) The nuts and bolts of cognitive remediation: exploring how different training components relate to cognitive and functional gains. Schizophrenia Research 203, 1216.
Cella, M, Reeder, C and Wykes, T (2014) It is all in the factors: effects of cognitive remediation on symptom dimensions. Schizophrenia Research 156, 6062.
Cella, M, Reeder, C and Wykes, T (2015) Lessons learnt? The importance of metacognition and its implications for Cognitive Remediation in schizophrenia. Frontiers in Psychology 6, 1259.
Cella, M, Preti, A, Edwards, C, Dow, T and Wykes, T (2017) Cognitive remediation for negative symptoms of schizophrenia: a network meta-analysis. Clinical Psychology Review 52, 4351.
Chen, MD, Kuo, YH, Chang, YC, Hsu, ST, Kuo, CC and Chang, JJ (2016) Influences of aerobic dance on cognitive performance in adults with schizophrenia. Occupational Therapy International 23, 346356.
Choi, KH, Wykes, T and Kurtz, MM (2013) Adjunctive pharmacotherapy for cognitive deficits in schizophrenia: meta-analytical investigation of efficacy. The British Journal of Psychiatry 203, 172178.
Cleveland, WS and Devlin, SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association 83, 596610.
Cui, J-F, Zou, Y-Z, Wang, J, Chen, N, Fan, H-Z, Yao, J and Duan, J-H (2012) Reliability and validity of the UCSD Performance-based Skills Assessment-Brief. Chinese Mental Health Journal 26, 577583.
Dickinson, D, Tenhula, W, Morris, S, Brown, C, Peer, J, Spencer, K, Li, L, Gold, JM and Bellack, AS (2010) A randomized, controlled trial of computer-assisted cognitive remediation for schizophrenia. American Journal of Psychiatry 167, 170180.
Glicksohn, J and Cohen, Y (2000) Can music alleviate cognitive dysfunction in schizophrenia? Psychopathology 33, 4347.
Gomar, JJ, Valls, E, Radua, J, Mareca, C, Tristany, J, del Olmo, F, Rebolleda-Gil, C, Jañez-Álvarez, M, de Álvaro, FJ, Ovejero, MR and Llorente, A (2015) A multisite, randomized controlled clinical trial of computerized cognitive remediation therapy for schizophrenia. Schizophrenia Bulletin 41, 13871396.
Green, MF, Kern, RS, Braff, DL and Mintz, J (2000) Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the ‘right stuff’? Schizophrenia Bulletin 26, 119136.
Grynszpan, O, Perbal, S, Pelissolo, A, Fossati, P, Jouvent, R, Dubal, S and Perez-Diaz, F (2011) Efficacy and specificity of computer-assisted cognitive remediation in schizophrenia: a meta-analytical study. Psychological Medicine 41, 163173.
Heaton, R, Chelune, G, Talley, J, Kay, G and Curtiss, G (1993). Wisconsin Card Sorting Test Manual, Revised and Expanded. Florida: Psychological Resources.
Honigfeld, G, Gillis, RD and Klett, CJ (1966) NOSIE-30: a treatment-sensitive ward behavior scale. Psychological Reports 19, 180182.
Huddy, V, Reeder, C, Kontis, D, Wykes, T and Stahl, D (2012) The effect of working alliance on adherence and outcome in cognitive remediation therapy. The Journal of Nervous and Mental Disease 200, 614619.
Johnson, AT (1991) Curvefitting. In Weitkunat, R (ed.), Digital Biosignal Processing. New York: Elsevier Science Ltd, pp. 309336.
Kay, SR (1990) Positive-negative symptom assessment in schizophrenia: psychometric issues and scale comparison. Psychiatric Quarterly 61, 163178.
Kern, RS, Nuechterlein, KH, Green, MF, Baade, LE, Fenton, WS, Gold, JM, Keefe, RS, Mesholam-Gately, R, Mintz, J, Seidman, LJ and Stover, E (2008) The MATRICS Consensus Cognitive Battery, part 2: co-norming and standardization. American Journal of Psychiatry 165, 214220.
Kontis, D, Huddy, V, Reeder, C, Landau, S and Wykes, T (2013) Effects of age and cognitive reserve on cognitive remediation therapy outcome in patients with schizophrenia. The American Journal of Geriatric Psychiatry 21, 218230.
Kurtz, MM, Mueser, KT, Thime, WR, Corbera, S and Wexler, BE (2015) Social skills training and computer-assisted cognitive remediation in schizophrenia. Schizophrenia Research 162, 3541.
Li, Y (1987) Application of NOSIE in the study of neuroleptic treatment. Zhonghua shen jing jing shen ke za zhi-Chinese Journal of Neurology and Psychiatry 20, 325327.
McGurk, SR and Mueser, KT (2008) Response to cognitive rehabilitation in older versus younger persons with severe mental illness. American Journal of Psychiatric Rehabilitation 11, 90105.
Pillet, B, Morvan, Y, Todd, A, Franck, N, Duboc, C, Grosz, A, Launay, C, Demily, C, Gaillard, R, Krebs, MO and Amado, I (2015) Cognitive remediation therapy (CRT) benefits more to patients with schizophrenia with low initial memory performances. Disability and Rehabilitation 37, 846853.
Ramsay, IS, Ma, S, Fisher, M, Loewy, RL, Ragland, JD, Niendam, T, Carter, CS and Vinogradov, S (2018) Model selection and prediction of outcomes in recent onset schizophrenia patients who undergo cognitive training. Schizophrenia Research: Cognition 11, 15.
Rass, O, Forsyth, JK, Bolbecker, AR, Hetrick, WP, Breier, A, Lysaker, PH and O'Donnell, BF (2012) Computer-assisted cognitive remediation for schizophrenia: a randomized single-blind pilot study. Schizophrenia Research 139, 9298.
Reeder, C, Newton, E, Frangou, S and Wykes, T (2004) Which executive skills should we target to affect social functioning and symptom change? A study of a cognitive remediation therapy program. Schizophrenia Bulletin 30, 87100.
Reeder, C, Smedley, N, Butt, K, Bogner, D and Wykes, T (2006) Cognitive predictors of social functioning improvements following cognitive remediation for schizophrenia. Schizophrenia Bulletin 32(suppl. 1), S123S131.
Reeder, C, Huddy, V, Cella, M, Taylor, R, Greenwood, K, Landau, S and Wykes, T (2017) A new generation computerised metacognitive cognitive remediation programme for schizophrenia (CIRCuiTS): a randomised controlled trial. Psychological Medicine 47, 27202730.
Rose, D, Wykes, T, Farrier, D, Doran, AM, Sporle, T and Bogner, D (2008) What do clients think of cognitive remediation therapy?: a consumer-led investigation of satisfaction and side effects. American Journal of Psychiatric Rehabilitation 11, 181204.
Rosenberg, M (1965) Society and the Adolescent Self-Image. New Jersey: Princeton University Press.
Spaulding, WD, Fleming, SK, Reed, D, Sullivan, M, Storzbach, D and Lam, M (1999 a) Cognitive functioning in schizophrenia: implications for psychiatric rehabilitation. Schizophrenia Bulletin 25, 275289.
Spaulding, WD, Reed, D, Sullivan, M, Richardson, C and Weiler, M (1999 b) Effects of cognitive treatment in psychiatric rehabilitation. Schizophrenia Bulletin 25, 657676.
Tan, S and Liu, D (2016) A review of the Chinese literature on cognitive remediation in psychosis. Asian Journal of Psychiatry 22, 129134.
Thomas, KR, Puig, O and Twamley, EW (2017) Age as a moderator of change following compensatory cognitive training in individuals with severe mental illnesses. Psychiatric Rehabilitation Journal 40, 70.
Tianmei, S, Jianzhong, Y and Liang, S (2004) The reliability, validity of PANSS and its implication. Chinese Journal of Mental Health 18, 4547.
Twamley, EW, Jeste, DV and Bellack, AS (2003) A review of cognitive training in Schizophrenia. Schizophrenia Bulletin 29, 359382.
Twamley, EW, Vella, L, Burton, CZ, Heaton, RK and Jeste, DV (2012) Compensatory cognitive training for psychosis: effects in a randomized controlled trial. The Journal of Clinical Psychiatry 73, 1212.
Wang-Ping, GH, Xu-Jiayu, HJ and Chengjiang, W (1998) Reliability and validity of self-esteem scale. Shandong Journal of Psychiatry 4, 3132.
Wykes, T and Reeder, C (2005) Cognitive Remediation Therapy for Schizophrenia: Theory and Practice. London: Routledge.
Wykes, T, Reeder, C, Corner, J, Williams, C and Everitt, B (1999) The effects of neurocognitive remediation on executive processing in patients with schizophrenia. Schizophrenia Bulletin 25, 291307.
Wykes, T, Newton, E, Landau, S, Rice, C, Thompson, N and Frangou, S (2007 a) Cognitive remediation therapy (CRT) for young early onset patients with schizophrenia: an exploratory randomized controlled trial. Schizophrenia Research 94, 221230.
Wykes, T, Reeder, C, Landau, S, Everitt, B, Knapp, M, Patel, A and Romeo, R (2007 b) Cognitive remediation therapy in schizophrenia: randomised controlled trial. The British Journal of Psychiatry 190, 421427.
Wykes, T, Reeder, C, Landau, S, Matthiasson, P, Haworth, E and Hutchinson, C (2009) Does age matter? Effects of cognitive rehabilitation across the age span. Schizophrenia Research 113, 252258.
Wykes, T, Huddy, V, Cellard, C, McGurk, SR and Czobor, P (2011) A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. American Journal of Psychiatry 168, 472485.
Yanlin, H and MingYuan, Z (2000) The Chinese norm and factors analysis of PANSS. Chinese Journal of Clinical Psychology 82, 6569.
Zou, YZ, Cui, JF, Wang, J, Chen, N, Tan, SP, Zhang, D, Xu, Z, Song, SG, Wang, YH, Li, Y and Gao, W (2009) Clinical reliability and validity of the Chinese version of measurement and treatment research to improve cognition in schizophrenia consensus cognitive battery. Chinese Journal of Psychiatry 42, 2933.


Type Description Title
Supplementary materials

Tan et al. supplementary material
Tan et al. supplementary material 1

 Word (38 KB)
38 KB
Supplementary materials

Tan et al. supplementary material
Tan et al. supplementary material 2

 Word (21 KB)
21 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed