Skip to main content Accessibility help
×
Home

A study of wrist-worn activity measurement as a potential real-world biomarker for late-life depression

  • J. T. O'Brien (a1), P. Gallagher (a2) (a3), D. Stow (a2), N. Hammerla (a4), T. Ploetz (a4), M. Firbank (a2), C. Ladha (a4), K. Ladha (a4), D. Jackson (a4), R. McNaney (a4), I. N. Ferrier (a2) and P. Olivier (a4)...

Abstract

Background

Late-life depression (LLD) is associated with a decline in physical activity. Typically this is assessed by self-report questionnaires and, more recently, with actigraphy. We sought to explore the utility of a bespoke activity monitor to characterize activity profiles in LLD more precisely.

Method

The activity monitor was worn for 7 days by 29 adults with LLD and 30 healthy controls. Subjects underwent neuropsychological assessment and quality of life (QoL) (36-item Short-Form Health Survey) and activities of daily living (ADL) scales (Instrumental Activities of Daily Living Scale) were administered.

Results

Physical activity was significantly reduced in LLD compared with controls (t = 3.63, p < 0.001), primarily in the morning. LLD subjects showed slower fine motor movements (t = 3.49, p < 0.001). In LLD patients, activity reductions were related to reduced ADL (r = 0.61, p < 0.001), lower QoL (r = 0.65, p < 0.001), associative learning (r = 0.40, p = 0.036), and higher Montgomery–Åsberg Depression Rating Scale score (r = −0.37, p < 0.05).

Conclusions

Patients with LLD had a significant reduction in general physical activity compared with healthy controls. Assessment of specific activity parameters further revealed the correlates of impairments associated with LLD. Our study suggests that novel wearable technology has the potential to provide an objective way of monitoring real-world function.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A study of wrist-worn activity measurement as a potential real-world biomarker for late-life depression
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A study of wrist-worn activity measurement as a potential real-world biomarker for late-life depression
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A study of wrist-worn activity measurement as a potential real-world biomarker for late-life depression
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Address for correspondence: P. Gallagher, Institute of Neuroscience, Newcastle University, The Henry Wellcome Building, Framlington Place, Newcastle upon Tyne NE2 4HH, UK. (Email: peter.gallagher@newcastle.ac.uk)

References

Hide All
Adams, T, Pounder, Z, Preston, S, Hanson, A, Gallagher, P, Harmer, CJ, McAllister-Williams, RH (2015). Test–retest reliability and task order effects of emotional cognitive tests in healthy subjects. Cognition and Emotion. Published online 29 July 2015. doi:10.1080/02699931.2015.1055713.
Bridle, C, Spanjers, K, Patel, S, Atherton, NM, Lamb, SE (2012). Effect of exercise on depression severity in older people: systematic review and meta-analysis of randomised controlled trials. British Journal of Psychiatry 201, 180185.
Bulling, A, Blanke, U, Schiele, B (2014). A tutorial on human activity recognition using body-worn inertial sensors. ACM Computing Surveys 46, 33.
Burton, C, McKinstry, B, Tatar, AS, Serrano-Blanco, A, Pagliari, C, Wolters, M (2013). Activity monitoring in patients with depression: a systematic review. Journal of Affective Disorders 145, 2128.
Burzynska, AZ, Chaddock-Heyman, L, Voss, MW, Wong, CN, Gothe, NP, Olson, EA, Knecht, A, Lewis, A, Monti, JM, Cooke, GE, Wojcicki, TR, Fanning, J, Chung, HD, Awick, E, McAuley, E, Kramer, AF (2014). Physical activity and cardiorespiratory fitness are beneficial for white matter in low-fit older adults. PLOS ONE 9, e107413.
Colloby, SJ, Firbank, MJ, Thomas, AJ, Vasudev, A, Parry, SW, O'Brien, JT (2011). White matter changes in late-life depression: a diffusion tensor imaging study. Journal of Affective Disorders 135, 216220.
Cooney, GM, Dwan, K, Greig, CA, Lawlor, DA, Rimer, J, Waugh, FR, McMurdo, M, Mead, GE (2013). Exercise for depression. Cochrane Database of Systematic Reviews, Issue 9, CD004366.
Firbank, MJ, Barber, R, Burton, EJ, O'Brien, JT (2008). Validation of a fully automated hippocampal segmentation method on patients with dementia. Human Brain Mapping 29, 14421449.
Firbank, MJ, Lloyd, AJ, Ferrier, N, O'Brien, JT (2004). A volumetric study of MRI signal hyperintensities in late-life depression. American Journal of Geriatric Psychiatry 12, 606612.
Folstein, MF, Folstein, SE, McHugh, PR (1975). “Mini-Mental State”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12, 189198.
Godfrey, A, Conway, R, Meagher, D, ÓLaighin, G (2008). Direct measurement of human movement by accelerometry. Medical Engineering and Physics 30, 13641386.
Hammerla, NY, Fisher, J, Andras, P, Rochester, L, Walker, R, Ploetz, T (2015). PD disease state assessment in naturalistic environments using deep learning. Twenty-Ninth AAAI Conference on Artificial Intelligence (http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9930).
Khan, A, Mellor, S, Berlin, E, Thompson, R, McNaney, R, Olivier, P, Plötz, T (2015). Beyond activity recognition: skill assessment from accelerometer data. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM: Osaka, Japan.
Kim, HY, Hye, Jin K, Jihyun, L, Sanghyun, Y, Kyoung-Gu, W, Jai Sung, N, Seungmin, Y (2013 a). Monitoring for disease progression via mathematical time-series modeling: actigraphy-based monitoring patients with depressive disorder. In IEEE 10th Consumer Communications and Networking Conference (CCNC), Las Vegas, pp. 5661.
Kim, J, Nakamura, T, Kikuchi, H, Sasaki, T, Yamamoto, Y (2013 b). Co-variation of depressive mood and locomotor dynamics evaluated by ecological momentary assessment in healthy humans. PLOS ONE 8, e74979.
Lawton, MP, Brody, EM (1969). Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9, 179186.
Lemke, MR, Wendorff, T, Mieth, B, Buhl, K, Linnemann, M (2000). Spatiotemporal gait patterns during over ground locomotion in major depression compared with healthy controls. Journal of Psychiatric Research 34, 277283.
Loprinzi, PD (2013). Objectively measured light and moderate-to-vigorous physical activity is associated with lower depression levels among older US adults. Aging and Mental Health 17, 801805.
Matthews, CE, Hagstromer, M, Pober, DM, Bowles, HR (2012). Best practices for using physical activity monitors in population-based research. Medicine and Science in Sports and Exercise 44, S68S76.
Montgomery, SA, Åsberg, M (1979). A new depression scale designed to be sensitive to change. British Journal of Psychiatry 134, 382389.
Mura, G, Carta, MG (2013). Physical activity in depressed elderly. A systematic review. Clinical Practice and Epidemiology in Mental Health 9, 125135.
Nelson, HE (1982). National Adult Reading Test, NART. Nelson Publishing Company: Windsor.
Oldfield, RC (1971). The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9, 97113.
Plötz, T, Hammerla, NY, Rozga, A, Reavis, A, Call, N, Gregor, DA (2012). Automatic assessment of problem behavior in individuals with developmental disabilities. In Proceedings of the 2012 ACM Conference on Ubiquitous Computing. ACM: Pittsburgh, PA.
Raoux, N, Benoit, O, Dantchev, N, Denise, P, Franc, B, Allilaire, JF, Widlöcher, D (1994). Circadian pattern of motor activity in major depressed patients undergoing antidepressant therapy: relationship between actigraphic measures and clinical course. Psychiatry Research 52, 8598.
Sabia, S, van Hees, VT, Shipley, MJ, Trenell, MI, Hagger-Johnson, G, Elbaz, A, Kivimaki, M, Singh-Manoux, A (2014). Association between questionnaire- and accelerometer-assessed physical activity: the role of sociodemographic factors. American Journal of Epidemiology 179, 781790.
Sheehan, DV, Lecrubier, Y, Sheehan, KH, Amorim, P, Janavs, J, Weiller, E, Hergueta, T, Baker, R, Dunbar, GC (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry 59 (Suppl. 20), 2233, quiz 34–57.
Sheikh, JI, Yesavage, JA (1986). Geriatric Depression Scale (GDS): recent evidence and development of a shorter version. Clinical Gerontologist 5, 165173.
Song, MR, Lee, YS, Baek, JD, Miller, M (2012). Physical activity status in adults with depression in the National Health and Nutrition Examination Survey, 2005–2006. Public Health Nursing 29, 208217.
Vallance, JK, Winkler, EA, Gardiner, PA, Healy, GN, Lynch, BM, Owen, N (2011). Associations of objectively-assessed physical activity and sedentary time with depression: NHANES (2005–2006). Preventive Medicine 53, 284288.
van Hees, V (2012). The challenge of assessing physical activity in populations. Lancet 380, 1555; author reply 15551556.
van Hees, VT, Fang, Z, Langford, J, Assah, F, Mohammad, A, da Silva, IC, Trenell, MI, White, T, Wareham, NJ, Brage, S (2014). Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. Journal of Applied Physiology (Bethesda, Md.: 1985) 117, 738744.
van Hees, VT, Renstrom, F, Wright, A, Gradmark, A, Catt, M, Chen, KY, Lof, M, Bluck, L, Pomeroy, J, Wareham, NJ, Ekelund, U, Brage, S, Franks, PW (2011). Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer. PLoS ONE 6, e22922.
Ware, JE Jr., Sherbourne, CD (1992). The MOS 36-item Short-Form Health Survey (SF-36). I. Conceptual framework and item selection. Medical Care 30, 473483.
Winkler, D, Pjrek, E, Lanzenberger, R, Baldinger, P, Eitel, D, Kasper, S, Frey, R (2014). Actigraphy in patients with treatment-resistant depression undergoing electroconvulsive therapy. Journal of Psychiatric Research 57, 96100.
Yaffe, K, Barnes, D, Nevitt, M, Lui, L-Y, Covinsky, K (2001). A prospective study of physical activity and cognitive decline in elderly women. Archives of Internal Medicine 161, 17031708.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

O'Brien supplementary material
Table S1

 Unknown (17 KB)
17 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed