Skip to main content Accessibility help

Reduced parahippocampal cortical thickness in subjects at ultra-high risk for psychosis

  • S. Tognin (a1), A. Riecher-Rössler (a2), E. M. Meisenzahl (a3), S. J. Wood (a4) (a5), C. Hutton (a6), S. J. Borgwardt (a2), N. Koutsouleris (a3), A. R. Yung (a7), P. Allen (a1), L. J. Phillips (a8), P. D. McGorry (a7), I. Valli (a1), D. Velakoulis (a4), B. Nelson (a7), J. Woolley (a1), C. Pantelis (a4), P. McGuire (a1) and A. Mechelli (a1)...



Grey matter volume and cortical thickness represent two complementary aspects of brain structure. Several studies have described reductions in grey matter volume in people at ultra-high risk (UHR) of psychosis; however, little is known about cortical thickness in this group. The aim of the present study was to investigate cortical thickness alterations in UHR subjects and compare individuals who subsequently did and did not develop psychosis.


We examined magnetic resonance imaging data collected at four different scanning sites. The UHR subjects were followed up for at least 2 years. Subsequent to scanning, 50 UHR subjects developed psychosis and 117 did not. Cortical thickness was examined in regions previously identified as sites of neuroanatomical alterations in UHR subjects, using voxel-based cortical thickness.


At baseline UHR subjects, compared with controls, showed reduced cortical thickness in the right parahippocampal gyrus (p < 0.05, familywise error corrected). There were no significant differences in cortical thickness between the UHR subjects who later developed psychosis and those who did not.


These data suggest that UHR symptomatology is characterized by alterations in the thickness of the medial temporal cortex. We did not find evidence that the later progression to psychosis was linked to additional alterations in cortical thickness, although we cannot exclude the possibility that the study lacked sufficient power to detect such differences.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Reduced parahippocampal cortical thickness in subjects at ultra-high risk for psychosis
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Reduced parahippocampal cortical thickness in subjects at ultra-high risk for psychosis
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Reduced parahippocampal cortical thickness in subjects at ultra-high risk for psychosis
      Available formats


The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution-NonCommercial-ShareAlike licence . The written permission of Cambridge University Press must be obtained for commercial re-use.

Corresponding author

* Address for correspondence: S. Tognin, Department of Psychosis Studies, PO Box 67, Institute of Psychiatry, King's College London, De Crespigny Park, London SE5 8AF, UK. (Email:


Hide All

These authors contributed equally to this work.



Hide All
Allen, P, Luigjes, J, Howes, OD, Egerton, A, Hirao, K, Valli, I, Kambeitz, J, Fusar-Poli, P, Broome, M, McGuire, P (2012). Transition to psychosis associated with prefrontal and subcortical dysfunction in ultra high-risk individuals. Schizophrenia Bulletin 38, 12681276.
Allen, P, Seal, ML, Valli, I, Fusar-Poli, P, Perlini, C, Day, F, Wood, SJ, Williams, SC, McGuire, PK (2011). Altered prefrontal and hippocampal function during verbal encoding and recognition in people with prodromal symptoms of psychosis. Schizophrenia Bulletin 37, 746756.
Ashburner, J (2007). A fast diffeomorphic image registration algorithm. Neuroimage 38, 95113.
Borgwardt, SJ, McGuire, PK, Aston, J, Gschwandtner, U, Pflüger, MO, Stieglitz, RD, Radue, EW, Riecher-Rössler, A (2008). Reductions in frontal, temporal and parietal volume associated with the onset of psychosis. Schizophrenia Research 106, 108114.
Buehlmann, E, Berger, GE, Aston, J, Gschwandtner, U, Pflueger, MO, Borgwardt, SJ, Radue, EW, Riecher-Rössler, A (2010). Hippocampus abnormalities in at risk mental states for psychosis? A cross-sectional high resolution region of interest magnetic resonance imaging study. Journal of Psychiatric Research 44, 447453.
Büschlen, J, Berger, GE, Borgwardt, SJ, Aston, J, Gschwandtner, U, Pflueger, MO, Kuster, P, Radü, EW, Stieglitz, RD, Riecher-Rössler, A (2011). Pituitary volume increase during emerging psychosis. Schizophrenia Research 125, 4148.
Fischl, B, Dale, AM (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences USA 97, 1105011055.
Fornito, A, Yucel, M, Wood, SJ, Adamson, C, Velakoulis, D, Saling, MM, McGorry, PD, Pantelis, C (2008 a). Surface-based morphometry of the anterior cingulate cortex in first episode schizophrenia. Human Brain Mapping 29, 478489.
Fornito, A, Yung, AR, Wood, SJ, Phillips, LJ, Nelson, B, Cotton, S, Velakoulis, D, McGorry, PD, Pantelis, C, Yucel, M (2008 b). Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: an MRI study of ultra-high-risk individuals. Biological Psychiatry 64, 758765.
Fusar-Poli, P, Bonoldi, I, Yung, AR, Borgwardt, S, Kempton, MJ, Valmaggia, L, Barale, F, Caverzasi, E, McGuire, P (2012). Predicting psychosis: meta-analysis of transition outcomes in individuals at high clinical risk. Archives of General Psychiatry 69, 220229.
Gogtay, N,Vyas, NS,Testa, R,Wood, SJ,Pantelis, C (2011). Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophrenia Bulletin 37, 504513.
Gross, G, Huber, G, Klosterkotter, J (1987). Bonn Scale for the Assessment of Basic Symptoms – BSABS. Springer: Berlin.
Haller, S, Borgwardt, SJ, Schindler, C, Aston, J, Radue, EW, Riecher-Rössler, A (2009). Can cortical thickness asymmetry analysis contribute to detection of at-risk mental state and first-episode psychosis? A pilot study. Radiology 250, 212221.
Hutton, C, De Vita, E, Ashburner, J, Deichmann, R, Turner, R (2008). Voxel-based cortical thickness measurements in MRI. Neuroimage 40, 17011710.
Hutton, C, Draganski, B, Ashburner, J, Weiskopf, N (2009). A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage 48, 371380.
Jack, CR Jr, Bernstein, MA, Fox, NC, Thompson, P, Alexander, G, Harvey, D, Borowski, B, Britson, PJ, Whitwell, JL, Ward, C, Dale, AM, Felmlee, JP, Gunter, JL, Hill, DL, Killiany, R, Schuff, N, Fox-Bosetti, S, Lin, C, Studholme, C, DeCarli, CS, Krueger, G, Ward, HA, Metzger, GJ, Scott, KT, Mallozzi, R, Blezek, D, Levy, J, Debbins, JP, Fleisher, AS, Albert, M, Green, R, Bartzokis, G, Glover, G, Mugler, J, Weiner, MW (2008). The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging 27, 685691.
Job, DE, Whalley, HC, Johnstone, EC, Lawrie, SM (2005). Grey matter changes over time in high risk subjects developing schizophrenia. Neuroimage 25, 10231030.
Job, DE, Whalley, HC, McConnell, S, Glabus, M, Johnstone, EC, Lawrie, SM (2003). Voxel-based morphometry of grey matter densities in subjects at high risk of schizophrenia. Schizophrenia Research 64, 113.
Jones, SE, Buchbinder, BR, Aharon, I (2000). Three-dimensional mapping of cortical thickness using Laplace's equation. Human Brain Mapping 11, 1232.
Jung, WH, Kim, JS, Jang, JH, Choi, JS, Jung, MH, Park, JY, Han, JY, Choi, CH, Kang, DH, Chung, CK, Kwon, JS (2011). Cortical thickness reduction in individuals at ultra-high-risk for psychosis. Schizophrenia Bulletin 37, 839849.
Kim, JS, Singh, V, Lee, JK, Lerch, J, Ad-Dab'bagh, Y, MacDonald, D, Lee, JM, Kim, SI, Evans, AC (2005). Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 27, 210221.
Koutsouleris, N, Meisenzahl, EM, Davatzikos, C, Bottlender, R, Frodl, T, Scheuerecker, J, Schmitt, G, Zetzsche, T, Decker, P, Reiser, M, Moller, HJ, Gaser, C (2009). Use of neuroanatomical pattern classification to identify subjects in at-risk mental states of psychosis and predict disease transition. Archives of General Psychiatry 66, 700712.
Lerch, JP, Evans, AC (2005). Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 24, 163173.
McGorry, PD, Nelson, B, Amminger, GP, Bechdolf, A, Francey, SM, Berger, G, Riecher-Rössler, A, Klosterkotter, J, Ruhrmann, S, Schultze-Lutter, F, Nordentoft, M, Hickie, I, McGuire, P, Berk, M, Chen, EY, Keshavan, MS, Yung, AR (2009). Intervention in individuals at ultra-high risk for psychosis: a review and future directions. Journal of Clinical Psychiatry 70, 12061212.
McGorry, PD, Yung, AR, Phillips, LJ (2003). The “close-in” or ultra high-risk model: a safe and effective strategy for research and clinical intervention in prepsychotic mental disorder. Schizophrenia Bulletin 29, 771790.
Mechelli, A, Riecher-Rössler, A, Meisenzahl, EM, Tognin, S, Wood, SJ, Borgwardt, SJ, Koutsouleris, N, Yung, AR, Stone, JM, Phillips, LJ, McGorry, PD, Valli, I, Velakoulis, D, Woolley, J, Pantelis, C, McGuire, P (2011). Neuroanatomical abnormalities that predate the onset of psychosis: a multicenter study. Archives of General Psychiatry 68, 489495.
Meisenzahl, EM, Koutsouleris, N, Gaser, C, Bottlender, R, Schmitt, GJ, McGuire, P, Decker, P, Burgermeister, B, Born, C, Reiser, M, Möller, HJ (2008). Structural brain alterations in subjects at high-risk of psychosis: a voxel-based morphometric study. Schizophrenia Research 102, 150162.
Narr, KL, Bilder, RM, Toga, AW, Woods, RP, Rex, DE, Szeszko, PR, Robinson, D, Sevy, S, Gunduz-Bruce, H, Wang, Y-P, DeLuca, H, Thompson, PM (2005 a). Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cerebral Cortex 15, 708719.
Narr, KL, Toga, AW, Szeszko, P, Thompson, PM, Woods, RP, Robinson, D, Sevy, S, Wang, Y, Schrock, K, Bilder, RM (2005 b). Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biological Psychiatry 58, 3240.
Pantelis, C, Velakoulis, D, McGorry, PD, Wood, SJ, Suckling, J, Phillips, LJ, Yung, AR, Bullmore, ET, Brewer, W, Soulsby, B, Desmond, P, McGuire, PK (2003). Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361, 281288.
Phillips, LJ, Velakoulis, D, Pantelis, C, Wood, S, Yuen, HP, Yung, AR, Desmond, P, Brewer, W, McGorry, PD (2002). Non-reduction in hippocampal volume is associated with higher risk of psychosis. Schizophrenia Research 58, 145158.
Riecher-Rössler, A, Aston, J, Ventura, J, Merlo, M, Borgwardt, S, Gschwandtner, U, Stieglitz, RD (2008). The Basel Screening Instrument for Psychosis (BSIP): development, structure, reliability and validity [article in German]. Fortschritte der Neurologie-Psychiatrie 76, 207216.
Röthlisberger, M, Riecher-Rössler, A, Aston, J, Fusar-Poli, P, Radü, EW, Borgwardt, S (2012). Cingulate volume abnormalities in emerging psychosis. Current Pharmaceutical Design 18, 495504.
Schultz, CC, Koch, K, Wagner, G, Roebel, M, Nenadic, I, Gaser, C, Schachtzabel, C, Reichenbach, JR, Sauer, H, Schlosser, RG (2010 a). Increased parahippocampal and lingual gyrification in first-episode schizophrenia. Schizophrenia Research 123, 137144.
Schultz, CC, Koch, K, Wagner, G, Roebel, M, Schachtzabel, C, Gaser, C, Nenadic, I, Reichenbach, JR, Sauer, H, Schlosser, RG (2010 b). Reduced cortical thickness in first episode schizophrenia. Schizophrenia Research 116, 204209.
Segall, JM, Turner, JA, van Erp, TG, White, T, Bockholt, HJ, Gollub, RL, Ho, BC, Magnotta, V, Jung, RE, McCarley, RW, Schulz, SC, Lauriello, J, Clark, VP, Voyvodic, JT, Diaz, MT, Calhoun, VD (2009). Voxel-based morphometric multisite collaborative study on schizophrenia. Schizophrenia Bulletin 35, 8295.
Seidman, LJ, Pantelis, C, Keshavan, MS, Faraone, SV, Goldstein, JM, Horton, NJ, Makris, N, Falkai, P, Caviness, VS, Tsuang, MT (2003). A review and new report of medial temporal lobe dysfunction as a vulnerability indicator for schizophrenia: a magnetic resonance imaging morphometric family study of the parahippocampal gyrus. Schizophrenia Bulletin 29, 803830.
Shenton, ME, Dickey, CC, Frumin, M, McCarley, RW (2001). A review of MRI findings in schizophrenia. Schizophrenia Research 49, 152.
Stonnington, CM, Tan, G, Kloppel, S, Chu, C, Draganski, B, Jack, CR Jr, Chen, K, Ashburner, J, Frackowiak, RS (2008). Interpreting scan data acquired from multiple scanners: a study with Alzheimer's disease. Neuroimage 39, 11801185.
Suckling, J, Barnes, A, Job, D, Brenan, D, Lymer, K, Dazzan, P, Marques, TR, MacKay, C, McKie, S, Williams, SR, Williams, SC, Lawrie, S, Deakin, B (2010). Power calculations for multicenter imaging studies controlled by the false discovery rate. Human Brain Mapping 31, 11831195.
Svirskis, T, Korkeila, J, Heinimaa, M, Huttunen, J, Ilonen, T, Ristkari, T, McGlashan, T, Salokangas, RK (2005). Axis-I disorders and vulnerability to psychosis. Schizophrenia Research 75, 439446.
Takahashi, T, Wood, SJ, Yung, AR, Phillips, LJ, Soulsby, B, McGorry, PD, Tanino, R, Zhou, SY, Suzuki, M, Velakoulis, D, Pantelis, C (2009). Insular cortex gray matter changes in individuals at ultra-high-risk of developing psychosis. Schizophrenia Research 111, 94102.
Takahashi, T, Wood, SJ, Yung, AR, Walterfang, M, Phillips, LJ, Soulsby, B, Kawasaki, Y, McGorry, PD, Suzuki, M, Velakoulis, D, Pantelis, C (2010). Superior temporal gyrus volume in antipsychotic-naive people at risk of psychosis. British Journal of Psychiatry 196, 206211.
Velakoulis, D, Wood, SJ, Wong, MT, McGorry, PD, Yung, A, Phillips, L, Smith, D, Brewer, W, Proffitt, T, Desmond, P, Pantelis, C (2006). Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Archives of General Psychiatry 63, 139149.
Venkatasubramanian, G, Jayakumar, PN, Gangadhar, BN, Keshavan, MS (2008). Automated MRI parcellation study of regional volume and thickness of prefrontal cortex (PFC) in antipsychotic-naive schizophrenia. Acta Psychiatrica Scandinavica 117, 420431.
Winkler, AM, Kochunov, P, Blangero, J, Almasy, L, Zilles, K, Fox, PT, Duggirala, R, Glahn, DC (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53, 11351146.
Wood, SJ, Yucel, M, Velakoulis, D, Phillips, LJ, Yung, AR, Brewer, W, McGorry, PD, Pantelis, C (2005). Hippocampal and anterior cingulate morphology in subjects at ultra-high-risk for psychosis: the role of family history of psychotic illness. Schizophrenia Research 75, 295301.
Yucel, M, Wood, SJ, Phillips, LJ, Stuart, GW, Smith, DJ, Yung, A, Velakoulis, D, McGorry, PD, Pantelis, C (2003). Morphology of the anterior cingulate cortex in young men at ultra-high risk of developing a psychotic illness. British Journal of Psychiatry 182, 518524.
Yung, AR, Nelson, B, Thompson, A, Wood, SJ (2010). The psychosis threshold in Ultra High Risk (prodromal) research: is it valid? Schizophrenia Research 120, 16.
Yung, AR, Phillips, LJ, Yuen, HP, McGorry, PD (2004). Risk factors for psychosis in an ultra high-risk group: psychopathology and clinical features. Schizophrenia Research 67, 131142.
Yung, AR, Yuen, HP, McGorry, PD, Phillips, LJ, Kelly, D, Dell'Olio, M, Francey, SM, Cosgrave, EM, Killackey, E, Stanford, C, Godfrey, K, Buckby, J (2005). Mapping the onset of psychosis: the Comprehensive Assessment of At-Risk Mental States. Australian and New Zealand Journal of Psychiatry 39, 964971.
Ziermans, TB, Schothorst, PF, Schnack, HG, Koolschijn, PC, Kahn, RS, van Engeland, H, Durston, S (2012). Progressive structural brain changes during development of psychosis. Schizophrenia Bulletin 38, 519530.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Tognin Supplementary Material
Tables S1-S8 and Figure S1

 Word (628 KB)
628 KB

Reduced parahippocampal cortical thickness in subjects at ultra-high risk for psychosis

  • S. Tognin (a1), A. Riecher-Rössler (a2), E. M. Meisenzahl (a3), S. J. Wood (a4) (a5), C. Hutton (a6), S. J. Borgwardt (a2), N. Koutsouleris (a3), A. R. Yung (a7), P. Allen (a1), L. J. Phillips (a8), P. D. McGorry (a7), I. Valli (a1), D. Velakoulis (a4), B. Nelson (a7), J. Woolley (a1), C. Pantelis (a4), P. McGuire (a1) and A. Mechelli (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.