Skip to main content Accessibility help
×
Home

Polygenic contributions to alcohol use and alcohol use disorders across population-based and clinically ascertained samples

  • Emma C. Johnson (a1), Sandra Sanchez-Roige (a2), Laura Acion (a3), Mark J. Adams (a4), Kathleen K. Bucholz (a1), Grace Chan (a5), Michael J. Chao (a6), David B. Chorlian (a7), Danielle M. Dick (a8) (a9), Howard J. Edenberg (a10) (a11), Tatiana Foroud (a11), Caroline Hayward (a12), Jon Heron (a13), Victor Hesselbrock (a5), Matthew Hickman (a13), Kenneth S. Kendler (a14), Sivan Kinreich (a7), John Kramer (a3), Sally I-Chun Kuo (a8), Samuel Kuperman (a3), Dongbing Lai (a11), Andrew M. McIntosh (a4), Jacquelyn L. Meyers (a7), Martin H. Plawecki (a15), Bernice Porjesz (a7), David Porteous (a16), Marc A. Schuckit (a2), Jinni Su (a17), Yong Zang (a18), Abraham A. Palmer (a2) (a19), Arpana Agrawal (a1), Toni-Kim Clarke (a4) and Alexis C. Edwards (a14)...

Abstract

Background

Studies suggest that alcohol consumption and alcohol use disorders have distinct genetic backgrounds.

Methods

We examined whether polygenic risk scores (PRS) for consumption and problem subscales of the Alcohol Use Disorders Identification Test (AUDIT-C, AUDIT-P) in the UK Biobank (UKB; N = 121 630) correlate with alcohol outcomes in four independent samples: an ascertained cohort, the Collaborative Study on the Genetics of Alcoholism (COGA; N = 6850), and population-based cohorts: Avon Longitudinal Study of Parents and Children (ALSPAC; N = 5911), Generation Scotland (GS; N = 17 461), and an independent subset of UKB (N = 245 947). Regression models and survival analyses tested whether the PRS were associated with the alcohol-related outcomes.

Results

In COGA, AUDIT-P PRS was associated with alcohol dependence, AUD symptom count, maximum drinks (R2 = 0.47–0.68%, p = 2.0 × 10−8–1.0 × 10−10), and increased likelihood of onset of alcohol dependence (hazard ratio = 1.15, p = 4.7 × 10−8); AUDIT-C PRS was not an independent predictor of any phenotype. In ALSPAC, the AUDIT-C PRS was associated with alcohol dependence (R2 = 0.96%, p = 4.8 × 10−6). In GS, AUDIT-C PRS was a better predictor of weekly alcohol use (R2 = 0.27%, p = 5.5 × 10−11), while AUDIT-P PRS was more associated with problem drinking (R2 = 0.40%, p = 9.0 × 10−7). Lastly, AUDIT-P PRS was associated with ICD-based alcohol-related disorders in the UKB subset (R2 = 0.18%, p < 2.0 × 10−16).

Conclusions

AUDIT-P PRS was associated with a range of alcohol-related phenotypes across population-based and ascertained cohorts, while AUDIT-C PRS showed less utility in the ascertained cohort. We show that AUDIT-P is genetically correlated with both use and misuse and demonstrate the influence of ascertainment schemes on PRS analyses.

Copyright

Corresponding author

Author for correspondence: Emma C. Johnson, E-mail: emma.c.johnson@wustl.edu

Footnotes

Hide All
*

Joint first authors.

Joint senior authors.

Footnotes

References

Hide All
Adams, M., Hill, W. D., Howard, D. M., Davis, K. A. S., Deary, I. J., Hotopf, M., & McIntosh, A. M. (2018). Factors associated with sharing email information and mental health survey participation in two large population cohorts. BioRxiv, 471433, 121. https://doi.org/10.1101/471433.
American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). Arlington, VA: American Psychiatric Pub.
Barr, P. B., Silberg, J., Dick, D. M., & Maes, H. H. (2018). Childhood socioeconomic status and longitudinal patterns of alcohol problems: Variation across etiological pathways in genetic risk. Social Science & Medicine, 209, pp. 5158.
Barton, K. (2011). MuMIn: multi-model inference. R package v. 1.6. 5.
Begleiter, H., Reich, T., Hesselbrock, V., Porjesz, B., Li, T.-K., Schuckit, M. A., … Rice, J. P. (1995). The collaborative study on the genetics of alcoholism. Alcohol Health and Research World, 19, 228.
Bucholz, K. K., Cadoret, R., Cloninger, C. R., Dinwiddie, S. H., Hesselbrock, V. M., Nurnberger, J. I., … Schuckit, M. A. (1994). A new, semi-structured psychiatric interview for use in genetic linkage studies: A report on the reliability of the SSAGA. Journal of Studies on Alcohol, 55(2), 149158. https://doi.org/10.15288/jsa.1994.55.149.
Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., … Marchini, J. (2018). The UK Biobank resource with deep phenotyping and genomic data. Nature, 562(7726), 203209. https://doi.org/10.1038/s41586-018-0579-z.
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4(1), 7. https://doi.org/10.1186/s13742-015-0047-8.
Clarke, T. K., Smith, A. H., Gelernter, J., Kranzler, H. R., Farrer, L. A., Hall, L. S., … McIntosh, A. M. (2016). Polygenic risk for alcohol dependence associates with alcohol consumption, cognitive function and social deprivation in a population-based cohort. Addiction Biology, 21(2), pp. 469480.
Clarke, T.-K., Adams, M. J., Davies, G., Howard, D. M., Hall, L. S., Padmanabhan, S., … McIntosh, A. M. (2017). Genome-wide association study of alcohol consumption and genetic overlap with other health-related traits in UK Biobank (N = 112,117). Molecular Psychiatry, 22. https://doi.org/10.1038/mp.2017.153.
Consortium, T. 1000 G. P. (2015). A global reference for human genetic variation. Nature, 526(7571), 6874.
Degenhardt, L., O'Loughlin, C., Swift, W., Romaniuk, H., Carlin, J., Coffey, C., … Patton, G. (2013). The persistence of adolescent binge drinking into adulthood: Findings from a 15-year prospective cohort study. BMJ Open, 3(8), e003015.
Dick, D. M., Meyers, J. L., Rose, R. J., Kaprio, J., & Kendler, K. S. (2011). Measures of current alcohol consumption and problems: Two independent twin studies suggest a complex genetic architecture. Alcoholism: Clinical and Experimental Research, 35(12), 21522161.
Edwards, A. C., Heron, J., Vladimirov, V., Wolen, A. R., Adkins, D. E., Aliev, F., … Kendler, K. S. (2017). The rate of change in alcohol misuse across adolescence is heritable. Alcoholism: Clinical and Experimental Research, 41(1), 5764. https://doi.org/10.1111/acer.13262.
ENOCH, M.-A. (2006). Genetic and environmental influences on the development of alcoholism. Annals of the New York Academy of Sciences, 1094(1), 193201. https://doi.org/10.1196/annals.1376.019.
Euesden, J., Lewis, C. M., & O'reilly, P. F. (2014). PRSice: Polygenic risk score software. Bioinformatics (Oxford, England), 31(9), 14661468.
Ewing, J. A. (1984). Detecting alcoholism: The CAGE questionnaire. JAMA: The Journal of the American Medical Association, 25(14), 19051907. https://doi.org/10.1001/jama.1984.03350140051025.
Irons, D. E., Iacono, W. G., & McGue, M. (2015). Tests of the effects of adolescent early alcohol exposures on adult outcomes. Addiction (Abingdon, England), 110(2), 269278. https://doi.org/10.1111/add.12747.
Johnson, E. C., St.Pierre, C. L., Meyers, J., Aliev, F., McCutcheon, V. V., Lai, D., … Agrawal, A. (2019) The genetic relationship between alcohol consumption and aspects of problem drinking in an ascertained sample. Alcohol Clin Exp Re. Accepted Author Manuscript. doi:10.1111/acer.14064.
Kassambara, A., Kosinski, M., & Biecek, P. (2017). survminer: Drawing Survival Curves using'ggplot2’. R Package Version 0.3, 1.
Kendler, K. S., Gardner, C., & Dick, D. M. (2011). Predicting alcohol consumption in adolescence from alcohol-specific and general externalizing genetic risk factors, key environmental exposures and their interaction. Psychological Medicine, 41(7), 15071516. https://doi.org/10.1017/S003329171000190X.
Kendler, K. S., Heath, A. C., Neale, M. C., Kessler, R. C., & Eaves, L. J. (1992). A population-based twin study of alcoholism in women. JAMA, 268(14), 18771882. https://doi.org/10.1001/jama.1992.03490140085040.
Kranzler, H. R., Zhou, H., Kember, R. L., Smith, R. V., Justice, A. C., Damrauer, S., … Gelernter, J. (2019). Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nature Communications, 10(1), 1499.
Lee, S. H., Goddard, M. E., Wray, N. R., & Visscher, P. M. (2012). A better coefficient of determination for genetic profile analysis. Genetic Epidemiology, 36(3), 214224. doi: 10.1002/gepi.21614
Liu, M., Jiang, Y., Wedow, R., Li, Y., Brazel, D. M., Chen, F., … Vrieze, S. (2019). Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nature Genetics, 51(2), 237244. https://doi.org/10.1038/s41588-018-0307-5.
Marees, A., Smit, D., Ong, J., MacGregor, S., An, J., Denys, D., & Derks, E. (2019). Potential influence of socioeconomic status on genetic correlations between alcohol consumption measures and mental health. Psychological Medicine, 115. doi: 10.1017/S0033291719000357. [Epub ahead of print].
Martin, A. R., Gignoux, C. R., Walters, R. K., Wojcik, G. L., Neale, B. M., Gravel, S., … Kenny, E. E. (2017). Human demographic history impacts genetic risk prediction across diverse populations. The American Journal of Human Genetics, 100(4), 635649.
McCutcheon, V. V., Grant, J. D., Heath, A. C., Bucholz, K. K., Sartor, C. E., Nelson, E. C., … Martin, N. G. (2012). Environmental influences predominate in remission from alcohol use disorder in young adult twins. Psychological Medicine, 42(11), 24212431.
Mies, G. W., Verweij, K. J. H., Treur, J. L., Ligthart, L., Fedko, I. O., Hottenga, J. J., … Vink, J. M. (2018). Polygenic risk for alcohol consumption and its association with alcohol-related phenotypes: Do stress and life satisfaction moderate these relationships? Drug and Alcohol Dependence, 183, 712.
Nakagawa, S., & Schielzeth, H. (2012). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133142. https://doi.org/10.1111/j.2041-210x.2012.00261.x.
Navrady, L. B., Wolters, M. K., MacIntyre, D. J., Clarke, T. K., Campbell, A. I., Murray, A. D., … McIntosh, A. M. (2018). Cohort profile: Stratifying resilience and depression longitudinally (STRADL): A questionnaire follow-up of generation Scotland: Scottish Family Health Study (GS: SFHS). International Journal of Epidemiology, 47(1), 1314g. https://doi.org/10.1093/ije/dyx115.
Nurnberger, J. I., Wiegand, R., Bucholz, K., O'Connor, S., Meyer, E. T., Reich, T., … Bierut, L. (2004). A family study of alcohol dependence: Coaggregation of multiple disorders in relatives of alcohol-dependent probands. Archives of General Psychiatry, 61(12), 12461256.
Nyholt, D. R. (2004). A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. The American Journal of Human Genetics, 74(4), 765769.
Pagan, J. L., Rose, R. J., Viken, R. J., Pulkkinen, L., Kaprio, J., & Dick, D. M. (2006). Genetic and environmental influences on stages of alcohol use across adolescence and into young adulthood. Behavior Genetics, 36(4), 483497. https://doi.org/10.1007/s10519-006-9062-y.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81. https://doi.org/10.1086/519795.
R Core Team (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Sanchez-Roige, S., Fontanillas, P., Elson, S. L., Gray, J. C., de Wit, H., Davis, L. K., … Palmer, A. A. (2017). Genome-wide association study of alcohol use disorder identification test (AUDIT) scores in 20 328 research participants of European ancestry. Addiction Biology, 24. https://doi.org/10.1111/adb.12574.
Sanchez-Roige, S., Palmer, A. A., Fontanillas, P., Elson, S. L., 23andMe Research Team, Substance Use Disorder Working Group of the Psychiatric Genomics Consortium, … Clarke, T.-K. (2018). Genome-wide association study meta-analysis of the Alcohol Use Disorders Identification Test (AUDIT) in two population-based cohorts. American Journal of Psychiatry, 176. https://doi.org/https://doi.org/10.1176/appi.ajp.2018.18040369.
Saunders, J. B., Aasland, O. G., Babor, T. F., De la Fuente, J. R., & Grant, M. (1993). Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption-II. Addiction, 88(6), 791804.
Savage, J. E., Salvatore, J. E., Aliev, F., Edwards, A. C., Hickman, M., Kendler, K. S., … Kaprio, J. (2018). Polygenic risk score prediction of alcohol dependence symptoms across population-based and clinically ascertained samples. Alcoholism: Clinical and Experimental Research, 42(3), 520530.
Schuckit, M. A., Smith, T. L., Danko, G., Kramer, J., Bucholz, K. K., McCutcheon, V., … Hesselbrock, M. (2018). A 22-year follow-up (range 16 to 23) of original subjects with baseline alcohol use disorders from the collaborative study on genetics of alcoholism. Alcoholism: Clinical and Experimental Research, 42(9), 17041714.
Schumann, G., Liu, C., O'Reilly, P., Gao, H., Song, P., Xu, B., … Elliott, P. (2016). KLB Is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference. Proceedings of the National Academy of Sciences of the USA, 113(50), 1437214377.
Smith, B. H., Campbell, A., Linksted, P., Fitzpatrick, B., Jackson, C., Kerr, S. M., … Morris, A. D. (2013). Cohort profile: Generation Scotland: Scottish Family Health Study (GS:SFHS). The study, its participants and their potential for genetic research on health and illness. International Journal of Epidemiology, 42. https://doi.org/10.1093/ije/dys084.
Therneau, T. M. (2018). Package ‘coxme.’ Mixed Effects Cox Models. R Package Version, 2.
Therneau, T. M., & Grambsch, P. M. (2013). Modeling survival data: Extending the Cox model. New York: Springer Science & Business Media.
Therneau, T. M., & Lumley, T. (2015). Package ‘survival. R Top Doc, 128, 1167.
Trim, R. S., Schuckit, M. A., & Smith, T. L. (2013). Predictors of initial and sustained remission from alcohol Use disorders: Findings from the 30-year follow-up of the S an D iego prospective study. Alcoholism: Clinical and Experimental Research, 37(8), 14241431.
Walters, R. K., Polimanti, R., Johnson, E. C., McClintick, J. N., Adams, M. J., Adkins, A. E., … Agrawal, A. (2018). Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nature Neuroscience, 21(12), 16561669. https://doi.org/10.1038/s41593-018-0275-1.
Wennberg, P., Andersson, T., & Bohman, M. (2000). Associations between different aspects of alcohol habits in adolescence, early adulthood, and early middle age: A prospective longitudinal study of a representative cohort of men and women. Psychology of Addictive Behaviors, 14(3), 303.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Johnson et al. supplementary material
Johnson et al. supplementary material

 Unknown (735 KB)
735 KB

Polygenic contributions to alcohol use and alcohol use disorders across population-based and clinically ascertained samples

  • Emma C. Johnson (a1), Sandra Sanchez-Roige (a2), Laura Acion (a3), Mark J. Adams (a4), Kathleen K. Bucholz (a1), Grace Chan (a5), Michael J. Chao (a6), David B. Chorlian (a7), Danielle M. Dick (a8) (a9), Howard J. Edenberg (a10) (a11), Tatiana Foroud (a11), Caroline Hayward (a12), Jon Heron (a13), Victor Hesselbrock (a5), Matthew Hickman (a13), Kenneth S. Kendler (a14), Sivan Kinreich (a7), John Kramer (a3), Sally I-Chun Kuo (a8), Samuel Kuperman (a3), Dongbing Lai (a11), Andrew M. McIntosh (a4), Jacquelyn L. Meyers (a7), Martin H. Plawecki (a15), Bernice Porjesz (a7), David Porteous (a16), Marc A. Schuckit (a2), Jinni Su (a17), Yong Zang (a18), Abraham A. Palmer (a2) (a19), Arpana Agrawal (a1), Toni-Kim Clarke (a4) and Alexis C. Edwards (a14)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed