Skip to main content Accessibility help
×
Home

Neural correlates of perception of emotional facial expressions in out-patients with mild-to-moderate depression and anxiety. A multicenter fMRI study

  • L. R. Demenescu (a1) (a2), R. Renken (a1), R. Kortekaas (a1), M.-J. van Tol (a3), J. B. C. Marsman (a4), M. A. van Buchem (a5), N. J. A. van der Wee (a3), D. J. Veltman (a6), J. A. den Boer (a7) and A. Aleman (a1) (a8)...

Abstract

Background

Depression has been associated with limbic hyperactivation and frontal hypoactivation in response to negative facial stimuli. Anxiety disorders have also been associated with increased activation of emotional structures such as the amygdala and insula. This study examined to what extent activation of brain regions involved in perception of emotional faces is specific to depression and anxiety disorders in a large community-based sample of out-patients.

Method

An event-related functional magnetic resonance imaging (fMRI) paradigm was used including angry, fearful, sad, happy and neutral facial expressions. One hundred and eighty-two out-patients (59 depressed, 57 anxiety and 66 co-morbid depression-anxiety) and 56 healthy controls selected from the Netherlands Study of Depression and Anxiety (NESDA) were included in the present study. Whole-brain analyses were conducted. The temporal profile of amygdala activation was also investigated.

Results

Facial expressions activated the amygdala and fusiform gyrus in depressed patients with or without anxiety and in healthy controls, relative to scrambled faces, but this was less evident in patients with anxiety disorders. The response shape of the amygdala did not differ between groups. Depressed patients showed dorsolateral prefrontal cortex (PFC) hyperactivation in response to happy faces compared to healthy controls.

Conclusions

We suggest that stronger frontal activation to happy faces in depressed patients may reflect increased demands on effortful emotion regulation processes triggered by mood-incongruent stimuli. The lack of strong differences in neural activation to negative emotional faces, relative to healthy controls, may be characteristic of the mild-to-moderate severity of illness in this sample and may be indicative of a certain cognitive-emotional processing reserve.

Copyright

Corresponding author

*Address for correspondence: Prof. Dr. A. Aleman, BCN Neuroimaging Center, University Medical Center Groningen, A. Deusinglaan 2, 9713 AW, Groningen, The Netherlands. (Email: a.aleman@med.umcg.nl)

References

Hide All
Almeida, JR, Versace, A, Hassel, S, Kupfer, DJ, Phillips, ML (2009). Elevated amygdala activity to sad facial expressions: a state marker of bipolar but not unipolar depression. Biological Psychiatry 67, 414421.
Anand, A, Li, Y, Wang, Y, Wu, J, Gao, S, Bukhari, L, Mathews, VP, Kalnin, A, Lowe, MJ (2005). Activity and connectivity of brain mood regulating circuit in depression: a functional magnetic resonance study. Biological Psychiatry 57, 10791088.
Andrews, G, Peters, L (1998). The psychometric properties of the composite international diagnostic interview. Social Psychiatry and Psychiatric Epidemiology 33, 8088.
APA (1994). Diagnostic and Statistical Manual of Mental Disorders, 4th edn. American Psychiatric Press: Washington, DC.
Beck, AT, Epstein, N, Brown, G, Steer, RA (1988). An inventory for measuring clinical anxiety: psychometric properties. Journal of Consulting and Clinical Psychology 56, 893897.
Birbaumer, N, Grodd, W, Diedrich, O, Klose, U, Erb, M, Lotze, M, Schneider, F, Weiss, U, Flor, H (1998). fMRI reveals amygdala activation to human faces in social phobics. Neuroreport 9, 12231226.
Bishop, SJ (2007). Neurocognitive mechanisms of anxiety: an integrative account. Trends in Cognitive Sciences 11, 307316.
Brett, M, Anton, JL, Valabregue, R, Poline, JB (2002). Region of interest analysis using an SPM toolbox. NeuroImage 16, abstract 497 (available on CD-ROM).
Campbell, DW, Sareen, J, Paulus, MP, Goldin, PR, Stein, MB, Reiss, JP (2007). Time-varying amygdala response to emotional faces in generalized social phobia. Biological Psychiatry 62, 455463.
Cooney, RE, Atlas, LY, Joormann, J, Eugne, F, Gotlib, IH (2006). Amygdala activation in the processing of neutral faces in social anxiety disorder: is neutral really neutral? Psychiatry Research 148, 5559.
Davidson, RJ, Irwin, W, Anderle, MJ, Kalin, NH (2003 a). The neural substrates of affective processing in depressed patients treated with venlafaxine. American Journal of Psychiatry 160, 6475.
Davidson, RJ, Pizzagalli, D, Nitschke, JB, Kalin, NH (2003 b). Handbook of Affective Science, pp. 824. Oxford University Press: New York.
Diekhof, EK, Falkai, P, Gruber, O (2008). Functional neuroimaging of reward processing and decision-making: a review of aberrant motivational and affective processing in addiction and mood disorders. Brain Research Review 59, 164184.
Elliott, R, Friston, KJ, Dolan, RJ (2000). Dissociable neural responses in human reward systems. Journal of Neuroscience 20, 61596165.
Elliott, R, Rubinsztein, JS, Sahakian, BJ, Dolan, RJ (2002). The neural basis of mood-congruent processing biases in depression. Archives of General Psychiatry 59, 597604.
Engel, K, Bandelow, B, Gruber, O, Wedekind, D (2009). Neuroimaging in anxiety disorders. Journal of Neural Transmission 116, 703716.
Epstein, J, Pan, H, Kocsis, JH, Yang, Y, Butler, T, Chusid, J, Hochberg, H, Murrough, J, Strohmayer, E, Stern, E, Silbersweig, DA (2006). Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. American Journal of Psychiatry 163, 17841790.
Etkin, A, Wager, TD (2007). Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry 164, 14761488.
Fales, CL, Barch, DM, Rundle, MM, Mintun, MA, Mathews, J, Snyder, AZ, Sheline, YI (2009). Antidepressant treatment normalizes hypoactivity in dorsolateral prefrontal cortex during emotional interference processing in major depression. Journal of Affective Disorders 112, 206211.
Fales, CL, Barch, DM, Rundle, MM, Mintun, MA, Snyder, AZ, Cohen, JD, Mathews, J, Sheline, YI (2008). Altered emotional interference processing in affective and cognitive-control brain circuitry in major depression. Biological Psychiatry 63, 377384.
Fitzgerald, PB, Laird, AR, Maller, J, Daskalakis, ZJ (2008). A meta-analytic study of changes in brain activation in depression. Human Brain Mapping 29, 736.
Friston, KJ, Fletcher, P, Josephs, O, Holmes, A, Rugg, MD, Turner, R (1998). Event-related fMRI: characterizing differential responses. NeuroImage 7, 3040.
Frodl, T, Scheuerecker, J, Albrecht, J, Kleemann, AM, Müller-Schunk, S, Koutsouleris, N, Möller, HJ, Brückmann, H, Wiesmann, M, Meisenzahl, E (2009). Neuronal correlates of emotional processing in patients with major depression. World Journal of Biological Psychiatry 10, 202208.
Fu, CHY, Williams, SCR, Cleare, AJ, Brammer, MJ, Walsh, ND, Kim, J, Andrew, CM, Merlo Pich, E, Williams, PM, Reed, LJ, Mitterschiffthaler, MT, Suckling, J, Bullmore, ET (2004). Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Archives of General Psychiatry 61, 877889.
Gorno-Tempini, ML, Pradelli, S, Serafini, M, Pagnoni, G, Baraldi, P, Porro, C, Nicoletti, R, Umit, C, Nichelli, P (2001). Explicit and incidental facial expression processing: an fMRI study. NeuroImage 14, 465473.
Gotlib, IH, Sivers, H, Gabrieli, JDE, Whitfield-Gabrieli, S, Goldin, P, Minor, KL, Canli, T (2005). Subgenual anterior cingulate activation to valenced emotional stimuli in major depression. Neuroreport 16, 17311734.
Haxby, JV, Hoffman, EA, Gobbini, MI (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences 4, 223233.
Hirschfeld, RMA (2001). The comorbidity of major depression and anxiety disorders: recognition and management in primary care Journal of Clinical Psychiatry. Primary Care Companion 3, 244254.
Lawrence, NS, Williams, AM, Surguladze, S, Giampietro, V, Brammer, MJ, Andrew, C, Frangou, S, Ecker, C, Phillips, ML (2004). Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biological Psychiatry 55, 578587.
Lee, BT, Seok, JH, Lee, BC, Cho, SW, Yoon, BJ, Lee, KU, Chae, JH, Choi, IG, Ham, BJ (2008). Neural correlates of affective processing in response to sad and angry facial stimuli in patients with major depressive disorder. Progress in Neuropsychopharmacology and Biological Psychiatry 32, 778785.
Lundqvist, D, Flykt, A, Ohmann, A (1998). The Karolinska Directed Emotional Faces (KDEF). Karolinska Institute: Stockholm.
Marks, IM, Mathews, AM (1979). Brief standard self-rating for phobic patients. Behaviour Research Therapy 17, 263267.
Mayberg, HS (1997). Limbic-cortical dysregulation: a proposed model of depression. Journal of Neuropsychiatry and Clinical Neurosciences 9, 471481.
McRae, K, Reiman, EM, Fort, CL, Chen, K, Lane, RD (2008). Association between trait emotional awareness and dorsal anterior cingulate activity during emotion is arousal-dependent. NeuroImage 41, 648655.
Montgomery, SA, Asberg, M (1979). A new depression scale designed to be sensitive to change. British Journal of Psychiatry 134, 382389.
Müller, MJ, Szegedi, A, Wetzel, H, Benkert, O (2000). Moderated and severe depression. Gradations for the Montgomery-Asberg Depression Rating Scale. Journal of Affective Disorders 60, 137140.
Norbury, R, Selvaraj, S, Taylor, MJ, Harmer, C, Cowen, PJ (2009). Increased neural response to fear in patients recovered from depression: a 3T functional magnetic resonance imaging study. Psychological Medicine 40, 425432.
Ochsner, KN, Ray, RR, Hughes, B, McRae, K, Cooper, JC, Weber, J, Gabrieli, JD, Gross, JJ (2009). Bottom-up and top-down processes in emotion generation: common and distinct neural mechanisms. Psychological Science 20, 13221331.
Palmen, SJMC, Durston, S, Nederveen, H, Van Engeland, H (2006). No evidence for preferential involvement of medial temporal lobe structures in high-functioning autism. Psychological Medicine 36, 827834.
Paulus, MP (2008). The role of neuroimaging for the diagnosis and treatment of anxiety disorders. Depression and Anxiety 25, 348356.
Penninx, BWJH, Beekman, ATF, Smit, JH, Zitman, FG, Nolen, WA, Spinhoven, P, Cuijpers, P, De Jong, PJ, Van Marwijk, HWJ, Assendelft, WJJ, Van Der Meer, K, Verhaak, P, Wensing, M, De Graaf, R, Hoogendijk, WJ, Ormel, J, Van Dyck, R; NESDA (2008). The Netherlands Study of Depression and Anxiety (NESDA): rationale, objectives and methods. International Journal of Methods in Psychiatric Research 17, 121140.
Phan, KL, Wager, T, Taylor, SF, Liberzon, I (2002). Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. NeuroImage 16, 331348.
Phillips, ML, Drevets, WC, Rauch, SL, Lane, R (2003). Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biological Psychiatry 54, 515528.
Savitz, JB, Drevets, WC (2009). Imaging phenotypes of major depressive disorder: genetic correlates. Neuroscience 164, 300330.
Sheline, YI, Barch, DM, Donnelly, JM, Ollinger, JM, Snyder, AZ, Mintun, MA (2001). Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biological Psychiatry 50, 651658.
Siegle, GJ, Steinhauer, SR, Thase, ME, Stenger, VA, Carter, CS (2002). Can't shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biological Psychiatry 51, 693707.
Stein, MB, Goldin, PR, Sareen, J, Zorrilla, ELT, Brown, GG (2002). Increased amygdala activation to angry and contemptuous faces in generalized social phobia. Archives of General Psychiatry 59, 10271034.
Stein, MB, Tancer, ME, Gelernter, CS, Vittone, BJ, Uhde, TW (1990). Major depression in patients with social phobia. American Journal of Psychiatry 147, 637639.
Straube, T, Kolassa, IT, Glauer, M, Mentzel, HJ, Miltner, WHR (2004). Effect of task conditions on brain responses to threatening faces in social phobics: an event-related functional magnetic resonance imaging study. Biological Psychiatry 56, 921930.
Straube, T, Mentzel, HJ, Miltner, WHR (2005). Common and distinct brain activation to threat and safety signals in social phobia. Neuropsychobiology 52, 163168.
Surguladze, S, Brammer, MJ, Keedwell, P, Giampietro, V, Young, AW, Travis, MJ, Williams, SCR, Phillips, ML (2005). A differential pattern of neural response toward sad versus happy facial expressions in major depressive disorder. Biological Psychiatry 57, 201209.
Wolfensberger, SPA, Veltman, DJ, Hoogendijk, WJG, Boomsma, DI, de Geus, EJC (2008). Amygdala responses to emotional faces in twins discordant or concordant for the risk for anxiety and depression. NeuroImage 41, 544552.
Yoo, HK, Kim, MJ, Kim, SJ, Sung, YH, Sim, ME, Lee, YS, Song, SY, Kee, BS, Lyoo, IK (2005). Putaminal gray matter volume decrease in panic disorder: an optimized voxel-based morphometry study. European Journal of Neuroscience 22, 20892094.
Zimmerman, M, Posternal, MA, Chelminski, I (2004). Derivation of a definition of remission on the Montgomery-Asberg depression rating scale corresponding to the definition of remission on the Hamilton rating scale for depression. Journal of Psychiatric Research 38, 577582.

Keywords

Type Description Title
WORD
Supplementary materials

Demenescu Supplementary Material
Demenescu Supplementary Material

 Word (190 KB)
190 KB

Neural correlates of perception of emotional facial expressions in out-patients with mild-to-moderate depression and anxiety. A multicenter fMRI study

  • L. R. Demenescu (a1) (a2), R. Renken (a1), R. Kortekaas (a1), M.-J. van Tol (a3), J. B. C. Marsman (a4), M. A. van Buchem (a5), N. J. A. van der Wee (a3), D. J. Veltman (a6), J. A. den Boer (a7) and A. Aleman (a1) (a8)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed