Skip to main content Accessibility help
×
Home

Neural connectivity biotypes: associations with internalizing problems throughout adolescence

  • Rajpreet Chahal (a1) (a2), David G. Weissman (a3), Michael N. Hallquist (a4), Richard W. Robins (a5), Paul D. Hastings (a2) (a5) and Amanda E. Guyer (a1) (a2)...

Abstract

Background

Neurophysiological patterns may distinguish which youth are at risk for the well-documented increase in internalizing symptoms during adolescence. Adolescents with internalizing problems exhibit altered resting-state functional connectivity (RSFC) of brain regions involved in socio-affective processing. Whether connectivity-based biotypes differentiate adolescents’ levels of internalizing problems remains unknown.

Method

Sixty-eight adolescents (37 females) reported on their internalizing problems at ages 14, 16, and 18 years. A resting-state functional neuroimaging scan was collected at age 16. Time-series data of 15 internalizing-relevant brain regions were entered into the Subgroup-Group Iterative Multi-Model Estimation program to identify subgroups based on RSFC maps. Associations between internalizing problems and connectivity-based biotypes were tested with regression analyses.

Results

Two connectivity-based biotypes were found: a Diffusely-connected biotype (N = 46), with long-range fronto-parietal paths, and a Hyper-connected biotype (N = 22), with paths between subcortical and medial frontal areas (e.g. affective and default-mode network regions). Higher levels of past (age 14) internalizing problems predicted a greater likelihood of belonging to the Hyper-connected biotype at age 16. The Hyper-connected biotype showed higher levels of concurrent problems (age 16) and future (age 18) internalizing problems.

Conclusions

Differential patterns of RSFC among socio-affective brain regions were predicted by earlier internalizing problems and predicted future internalizing problems in adolescence. Measuring connectivity-based biotypes in adolescence may offer insight into which youth face an elevated risk for internalizing disorders during this critical developmental period.

Copyright

Corresponding author

Author for correspondence: Rajpreet Chahal, E-mail: rchahal@stanford.edu; Amanda Guyer, E-mail: aeguyer@ucdavis.edu

References

Hide All
Alarcón, G., Cservenka, A., Rudolph, M. D., Fair, D. A., & Nagel, B. J. (2015). Developmental sex differences in resting state functional connectivity of amygdala sub-regions. NeuroImage, 115, 235244. https://doi.org/10.1016/j.neuroimage.2015.04.013.
Alarcón, G., Pfeifer, J. H., Fair, D. A., & Nagel, B. J. (2018). Adolescent gender differences in cognitive control performance and functional connectivity between default mode and fronto-parietal networks within a self-referential context. Frontiers in Behavioral Neuroscience, 12, 73. https://doi.org/10.3389/fnbeh.2018.00073.
Altemus, M., Sarvaiya, N., & Epperson, C. N. (2014). Sex differences in anxiety and depression clinical perspectives. Frontiers in Neuroendocrinology, 35(3), 320330. https://doi.org/10.1016/j.yfrne.2014.05.004.
Baker, S. T. E., Lubman, D. I., Yücel, M., Allen, N. B., Whittle, S., Fulcher, B. D., … Fornito, A. (2015). Developmental changes in brain network hub connectivity in late adolescence. The Journal of Neuroscience, 35(24), 90789087. https://doi.org/10.1523/JNEUROSCI.5043-14.2015.
Barrett, L. F., & Satpute, A. (2013). Large-scale brain networks in affective and social neuroscience: Towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23(3), 361372. https://doi.org/10.1016/j.conb.2012.12.012.
Berman, M. G., Peltier, S., Nee, D. E., Kross, E., Deldin, P. J., & Jonides, J. (2011). Depression, rumination and the default network. Social Cognitive and Affective Neuroscience, 6(5), 548555. https://doi.org/10.1093/scan/nsq080.
Betts, K. S., Baker, P., Alati, R., McIntosh, J. E., Macdonald, J. A., Letcher, P., & Olsson, C. A. (2016). The natural history of internalizing behaviours from adolescence to emerging adulthood: Findings from the Australian temperament project. Psychological Medicine, 46(13), 28152827. https://doi.org/10.1017/S0033291716001495.
Blanco, C., Wall, M. M., He, J.-P., Krueger, R. F., Olfson, M., Jin, C. J., … Merikangas, K. R. (2015). The space of common psychiatric disorders in adolescents: Comorbidity structure and individual latent liabilities. Journal of the American Academy of Child and Adolescent Psychiatry, 54(1), 4552. https://doi.org/10.1016/j.jaac.2014.10.007.
Blouin, A. G., Perez, E. L., & Blouin, J. H. (1988). Computerized administration of the diagnostic interview schedule. Psychiatry Research, 23(3), 335344. https://doi.org/10.1016/0165-1781(88)90024-8.
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: Anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 138. https://doi.org/10.1196/annals.1440.011.
Burkhouse, K. L., Stange, J. P., Jacobs, R. H., Bhaumik, R., Bessette, K. L., Peters, A. T., … Langenecker, S. A. (2019). Developmental changes in resting-state functional networks among individuals with and without internalizing psychopathologies. Depression and Anxiety, 36(2), 141152. https://doi.org/10.1002/da.22864.
Carragher, N., Krueger, R. F., Eaton, N. R., & Slade, T. (2015). Disorders without borders: Current and future directions in the meta-structure of mental disorders. Social Psychiatry and Psychiatric Epidemiology, 50(3), 339350. https://doi.org/10.1007/s00127-014-1004-z.
Catani, M., Dell'acqua, F., & Thiebaut de Schotten, M. (2013). A revised limbic system model for memory, emotion and behaviour. Neuroscience and Biobehavioral Reviews, 37(8), 17241737. https://doi.org/10.1016/j.neubiorev.2013.07.001.
Chahal, R, Gotlib, I. H., & Guyer, A. E. (2020). Research Review: Brain network connectivity and the heterogeneity of depression in adolescence – a precision mental health perspective. Journal of Child Psychology and Psychiatry, 117. https://doi.org/10.1111/jcpp.13250.
Chahal, R, Vilgis, V., Grimm, K. J., Hipwell, A. E., Forbes, E. E., Keenan, K., & Guyer, A. E. (2018). Girls’ pubertal development is associated with white matter microstructure in late adolescence. NeuroImage, 181, 659669. https://doi.org/10.1016/j.neuroimage.2018.07.050.
Chen, L.-A., Welse, A. H., & Chan, W. (2001). Estimators for the linear regression model based on winsorized observations. Statistica Sinica, 11(1), 147172.
Clasen, P. C., Beevers, C. G., Mumford, J. A., & Schnyer, D. M. (2014). Cognitive control network connectivity in adolescent women with and without a parental history of depression. Developmental Cognitive Neuroscience, 7, 1322. https://doi.org/10.1016/j.dcn.2013.10.008.
Connolly, C. G., Ho, T. C., Blom, E. H., LeWinn, K. Z., Sacchet, M. D., Tymofiyeva, O., … Yang, T. T. (2017). Resting-state functional connectivity of the amygdala and longitudinal changes in depression severity in adolescent depression. Journal of Affective Disorders, 207, 8694. https://doi.org/10.1016/j.jad.2016.09.026.
Coutinho, J. F., Fernandesl, S. V., Soares, J. M., Maia, L., Gonçalves, Ó. F., & Sampaio, A. (2016). Default mode network dissociation in depressive and anxiety states. Brain Imaging and Behavior, 10(1), 147157. https://doi.org/10.1007/s11682-015-9375-7.
Cullen, K. R., Westlund, M. K., Klimes-Dougan, B., Mueller, B. A., Houri, A., Eberly, L. E., & Lim, K. O. (2014). Abnormal amygdala resting-state functional connectivity in adolescent depression. JAMA Psychiatry, 71(10), 11381147. https://doi.org/10.1001/jamapsychiatry.2014.1087.
Dwyer, D. B., Harrison, B. J., Yücel, M., Whittle, S., Zalesky, A., Pantelis, C., … Fornito, A. (2014). Large-scale brain network dynamics supporting adolescent cognitive control. The Journal of Neuroscience, 34(42), 1409614107. https://doi.org/10.1523/JNEUROSCI.1634-14.2014.
Elliot, D., Ageton, S., & Huizinga, D. (1982). Explaining delinquency and drug Use. Boulder, CO: Behavioral Research Institute.
Fergusson, D. M., Horwood, L. J., Ridder, E. M., & Beautrais, A. L. (2005). Subthreshold depression in adolescence and mental health outcomes in adulthood. Archives of General Psychiatry, 62(1), 6672. https://doi.org/10.1001/archpsyc.62.1.66.
Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., … Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 16641671. https://doi.org/10.1038/nn.4135.
Garber, J., & Weersing, V. R. (2010). Comorbidity of anxiety and depression in youth: Implications for treatment and prevention. Clinical Psychology: A Publication of the Division of Clinical Psychology of the American Psychological Association, 17(4), 293306. https://doi.org/10.1111/j.1468-2850.2010.01221.x.
Gard, A. M., Waller, R., Swartz, J. R., Shaw, D. S., Forbes, E. E., & Hyde, L. W. (2018). Amygdala functional connectivity during socioemotional processing prospectively predicts increases in internalizing symptoms in a sample of low-income, urban, young men. NeuroImage, 178, 562573. https://doi.org/10.1016/j.neuroimage.2018.05.079.
Gates, K. M., Lane, S. T., Varangis, E., Giovanello, K., & Guiskewicz, K. (2017). Unsupervised classification during time-series model building. Multivariate Behavioral Research, 52(2), 129148. https://doi.org/10.1080/00273171.2016.1256187.
Gates, K. M., & Molenaar, P. C. M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63(1), 310319. https://doi.org/10.1016/j.neuroimage.2012.06.026.
Geng, H., Li, X., Chen, J., Li, X., & Gu, R. (2016). Decreased intra- and inter-salience network functional connectivity is related to trait anxiety in adolescents. Frontiers in Behavioral Neuroscience, 9, 110. https://doi.org/10.3389/fnbeh.2015.00350.
Goschke, T. (2014). Dysfunctions of decision-making and cognitive control as transdiagnostic mechanisms of mental disorders: Advances, gaps, and needs in current research. International Journal of Methods in Psychiatric Research, 23(Suppl 1), 4157. https://doi.org/10.1002/mpr.1410.
Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. NeuroImage, 99, 180190. https://doi.org/10.1016/j.neuroimage.2014.05.052.
Gratton, C., Laumann, T. O., Nielsen, A. N., Greene, D. J., Gordon, E. M., Gilmore, A. W., … Petersen, S. E. (2018). Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation. Neuron, 98(2), 439452.e5. https://doi.org/10.1016/j.neuron.2018.03.035.
Greening, S. G., & Mitchell, D. G. V. (2015). A network of amygdala connections predict individual differences in trait anxiety. Human Brain Mapping, 36(12), 48194830. https://doi.org/10.1002/hbm.22952.
Hankin, B. L., Snyder, H. R., Gulley, L. D., Schweizer, T. H., Bijttebier, P., Nelis, S., … Vasey, M. W. (2016). Understanding comorbidity among internalizing problems: Integrating latent structural models of psychopathology and risk mechanisms. Development and Psychopathology, 28(4 Pt 1), 9871012. https://doi.org/10.1017/S0954579416000663.
Hirshfeld-Becker, D. R., Gabrieli, J. D. E., Shapero, B. G., Biederman, J., Whitfield-Gabrieli, S., & Chai, X. J. (2019). Intrinsic functional brain connectivity predicts onset of major depression disorder in adolescence: A pilot study. Brain Connectivity, 9(5), 388398. https://doi.org/10.1089/brain.2018.0646.
Ho, T. C., Connolly, C. G., Henje Blom, E., LeWinn, K. Z., Strigo, I. A., Paulus, M. P., … Yang, T. T. (2015). Emotion-dependent functional connectivity of the default mode network in adolescent depression. Biological Psychiatry, 78(9), 635646. https://doi.org/10.1016/j.biopsych.2014.09.002.
Jacobs, R. H., Jenkins, L. M., Gabriel, L. B., Barba, A., Ryan, K. A., Weisenbach, S. L., … Welsh, R. C. (2014). Increased coupling of intrinsic networks in remitted depressed youth predicts rumination and cognitive control. PloS One, 9(8), e104366. https://doi.org/10.1371/journal.pone.0104366.
Jamnik, M. R., & DiLalla, L. F. (2019). Health outcomes associated with internalizing problems in early childhood and adolescence. Frontiers in Psychology, 10, 60. https://doi.org/10.3389/fpsyg.2019.00060.
Jarcho, J. M., Romer, A. L., Shechner, T., Galvan, A., Guyer, A. E., Leibenluft, E., … Nelson, E. E. (2015). Forgetting the best when predicting the worst: Preliminary observations on neural circuit function in adolescent social anxiety. Developmental Cognitive Neuroscience, 13, 2131. https://doi.org/10.1016/j.dcn.2015.03.002.
Kim, J., Zhu, W., Chang, L., Bentler, P. M., & Ernst, T. (2007). Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Human Brain Mapping, 28(2), 8593. https://doi.org/10.1002/hbm.20259.
Kotov, R., Krueger, R. F., Watson, D., Achenbach, T. M., Althoff, R. R., Bagby, R. M., … Zimmerman, M. (2017). The hierarchical taxonomy of psychopathology (HiTOP): A dimensional alternative to traditional nosologies. Journal of Abnormal Psychology, 126(4), 454477. https://doi.org/10.1037/abn0000258.
Ladouceur, C. D., Dahl, R. E., Williamson, D. E., Birmaher, B., Ryan, N. D., & Casey, B. J. (2005). Altered emotional processing in pediatric anxiety, depression, and comorbid anxiety-depression. Journal of Abnormal Child Psychology, 33(2), 165177. https://doi.org/10.1007/s10802-005-1825-z.
Lahey, B. B., Applegate, B., Waldman, I. D., Loft, J. D., Hankin, B. L., & Rick, J. (2004). The structure of child and adolescent psychopathology: Generating new hypotheses. Journal of Abnormal Psychology, 113(3), 358385. https://doi.org/10.1037/0021-843X.113.3.358.
Lahey, B. B., Rathouz, P. J., Van Hulle, C., Urbano, R. C., Krueger, R. F., Applegate, B., … Waldman, I. D. (2008). Testing structural models of DSM-IV symptoms of common forms of child and adolescent psychopathology. Journal of Abnormal Child Psychology, 36(2), 187206. https://doi.org/10.1007/s10802-007-9169-5.
Larsen, B., & Luna, B. (2018). Adolescence as a neurobiological critical period for the development of higher-order cognition. Neuroscience & Biobehavioral Reviews, 94, 179195. https://doi.org/10.1016/j.neubiorev.2018.09.005.
Lin, A., Yung, A. R., Wigman, J. T. W., Killackey, E., Baksheev, G., & Wardenaar, K. J. (2014). Validation of a short adaptation of the mood and anxiety symptoms questionnaire (MASQ) in adolescents and young adults. Psychiatry Research, 215(3), 778783. https://doi.org/10.1016/j.psychres.2013.12.018.
Liu, W., Yin, D., Cheng, W., Fan, M., You, M., Men, W., … Zhang, F. (2015). Abnormal functional connectivity of the amygdala-based network in resting-state fMRI in adolescents with generalized anxiety disorder. Medical Science Monitor, 21, 459467. https://doi.org/10.12659/MSM.893373.
Maresh, E. L., Allen, J. P., & Coan, J. A. (2014). Increased default mode network activity in socially anxious individuals during reward processing. Biology of Mood & Anxiety Disorders, 4(1), 7. https://doi.org/10.1186/2045-5380-4-7.
McEvoy, P. M., Salmon, K., Hyett, M. P., Jose, P. E., Gutenbrunner, C., Bryson, K., & Dewhirst, M. (2019). Repetitive negative thinking as a transdiagnostic predictor of depression and anxiety symptoms in adolescents. Assessment, 26(2), 324335. https://doi.org/10.1177/1073191117693923.
Morgan, J. K., Shaw, D. S., Olino, T. M., Musselman, S. C., Kurapati, N. T., & Forbes, E. E. (2016). History of depression and frontostriatal connectivity during reward processing in late adolescent boys. Journal of Clinical Child and Adolescent Psychology, 45(1), 5968. https://doi.org/10.1080/15374416.2015.1030753.
Ordaz, S. J., LeMoult, J., Colich, N. L., Prasad, G., Pollak, M., Popolizio, M., … Gotlib, I. H. (2016). Ruminative brooding is associated with salience network coherence in early pubertal youth. Social Cognitive and Affective Neuroscience, 12(2), 298310. https://doi.org/10.1093/scan/nsw133.
Pannekoek, J. N., van der Werff, S. J. A., Meens, P. H. F., van den Bulk, B. G., Jolles, D. D., Veer, I. M., … Vermeiren, R. R. J. M. (2014). Aberrant resting-state functional connectivity in limbic and salience networks in treatment—naïve clinically depressed adolescents. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 55(12), 13171327. https://doi.org/10.1111/jcpp.12266.
Parrish, K. H., Atherton, O. E., Quintana, A., Conger, R. D., & Robins, R. W. (2016). Reciprocal relations between internalizing symptoms and frequency of alcohol use: Findings from a longitudinal study of Mexican-origin youth. Psychology of Addictive Behaviors, 30(2), 203208. https://doi.org/10.1037/adb0000138.
Petersen, A. C., Crockett, L., Richards, M., & Boxer, A. (1988). A self-report measure of pubertal status: Reliability, validity, and initial norms. Journal of Youth and Adolescence, 17, 117133.
Petersen, I. T., Lindhiem, O., LeBeau, B., Bates, J. E., Pettit, G. S., Lansford, J. E., & Dodge, K. A. (2018). Development of internalizing problems from adolescence to emerging adulthood: Accounting for heterotypic continuity with vertical scaling. Developmental Psychology, 54(3), 586599. https://doi.org/10.1037/dev0000449.
Philippi, C. L., Tranel, D., Duff, M., & Rudrauf, D. (2015). Damage to the default mode network disrupts autobiographical memory retrieval. Social Cognitive and Affective Neuroscience, 10(3), 318326. https://doi.org/10.1093/scan/nsu070.
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 21422154. https://doi.org/10.1016/j.neuroimage.2011.10.018.
Prenoveau, J. M., Craske, M. G., Zinbarg, R. E., Mineka, S., Rose, R. D., & Griffith, J. W. (2011). Are anxiety and depression just as stable as personality during late adolescence? Results from a three-year longitudinal latent variable study. Journal of Abnormal Psychology, 120(4), 832843. https://doi.org/10.1037/a0023939.
Price, R. B., Gates, K., Kraynak, T. E., Thase, M. E., & Siegle, G. J. (2017). Data-driven subgroups in depression derived from directed functional connectivity paths at rest. Neuropsychopharmacology, 42(13), 26232632. https://doi.org/10.1038/npp.2017.97.
Price, R. B., Lane, S., Gates, K., Kraynak, T. E., Horner, M. S., Thase, M. E., & Siegle, G. J. (2017). Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood. Biological Psychiatry, 81(4), 347357. https://doi.org/10.1016/j.biopsych.2016.06.023
Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(1), 136. https://doi.org/10.18637/jss.v048.i02.
Roy, A. K., Fudge, J. L., Kelly, C., Perry, J. S. A., Daniele, T., Carlisi, C., … Ernst, M. (2013). Intrinsic functional connectivity of amygdala-based networks in adolescent generalized anxiety disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 52(3), 290299.e2. https://doi.org/10.1016/j.jaac.2012.12.010.
Rutter, M., Caspi, A., & Moffitt, T. E. (2003). Using sex differences in psychopathology to study causal mechanisms: Unifying issues and research strategies. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 44(8), 10921115.
Salk, R. H., Hyde, J. S., & Abramson, L. Y. (2017). Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms. Psychological Bulletin, 143(8), 783822. https://doi.org/10.1037/bul0000102.
Scheuer, H., Alarcón, G., Demeter, D. V., Earl, E., Fair, D. A., & Nagel, B. J. (2017). Reduced fronto-amygdalar connectivity in adolescence is associated with increased depression symptoms over time. Psychiatry Research. Neuroimaging, 266, 3541. https://doi.org/10.1016/j.pscychresns.2017.05.012.
Schultz, D. H., Ito, T., Solomyak, L. I., Chen, R. H., Mill, R. D., Anticevic, A., & Cole, M. W. (2018). Global connectivity of the frontoparietal cognitive control network is related to depression symptoms in the general population. Network Neuroscience, 3(1), 107123. https://doi.org/10.1162/netn_a_00056.
Song, Z., Zhang, M., & Huang, P. (2016). Aberrant emotion networks in early major depressive disorder patients: An eigenvector centrality mapping study. Translational Psychiatry, 6, e819. https://doi.org/10.1038/tp.2016.81.
Stein, K., & Fazel, M. (2015). Depression in young people often goes undetected. The Practitioner, 259(1782), 1722, 2–3.
Strikwerda-Brown, C., Davey, C. G., Whittle, S., Allen, N. B., Byrne, M. L., Schwartz, O. S., … Harrison, B. J. (2015). Mapping the relationship between subgenual cingulate cortex functional connectivity and depressive symptoms across adolescence. Social Cognitive and Affective Neuroscience, 10(7), 961968. https://doi.org/10.1093/scan/nsu143.
Strimbu, K., & Tavel, J. A. (2010). What are biomarkers? Current Opinion in HIV and AIDS, 5(6), 463466. https://doi.org/10.1097/COH.0b013e32833ed177.
Suprano, I., Delon-Martin, C., Kocevar, G., Stamile, C., Hannoun, S., Achard, S., … Sappey-Marinier, D. (2019). Topological modification of brain networks organization in children with high intelligence quotient: A resting-state fMRI study. Frontiers in Human Neuroscience, 13, 112. https://doi.org/10.3389/fnhum.2019.00241.
Tang, S., Lu, L., Zhang, L., Hu, X., Bu, X., Li, H., … Huang, X. (2018). Abnormal amygdala resting-state functional connectivity in adults and adolescents with major depressive disorder: A comparative meta-analysis. EBioMedicine, 36, 436445. https://doi.org/10.1016/j.ebiom.2018.09.010.
Watson, D., Weber, K., Assenheimer, J. S., Clark, L. A., Strauss, M. E., & McCormick, R. A. (1995). Testing a tripartite model: I. Evaluating the convergent and discriminant validity of anxiety and depression symptom scales. Journal of Abnormal Psychology, 104(1), 314.
Weissman, D. G., Conger, R. D., Robins, R. W., Hastings, P. D., & Guyer, A. E. (2018). Income change alters default mode network connectivity for adolescents in poverty. Developmental Cognitive Neuroscience, 30, 9399. https://doi.org/10.1016/j.dcn.2018.01.008.
Weissman, D. G., Schriber, R. A., Fassbender, C., Atherton, O., Krafft, C., Robins, R. W., … Guyer, A. E. (2015). Earlier adolescent substance use onset predicts stronger connectivity between reward and cognitive control brain networks. Developmental Cognitive Neuroscience, 16, 121129. https://doi.org/10.1016/j.dcn.2015.07.002.
Williams, L. M. (2017). Defining biotypes for depression and anxiety based on large-scale circuit dysfunction: A theoretical review of the evidence and future directions for clinical translation. Depression and Anxiety, 34(1), 924. https://doi.org/10.1002/da.22556.
Winefield, H. R., Hammarström, A., Nygren, K., & Hägglöf, B. (2013). Internalized symptoms in adolescence as predictors of mental health in adulthood in the Northern Swedish cohort. Health, 05(07), 11641171. https://doi.org/10.4236/health.2013.57157.
Woodcock, R., McGrew, K., & Mather, N. (2001). Woodcock-Johnson III tests of cognitive abilities. Ithaca, IL: Riverside Publishing.
Yale, C., & Forsyth, A. (1976). Winsorized regression. Technometrics, 18(3), 291300.
Yang, F., Fan, L., Zhai, T., Lin, Y., Wang, Y., Ma, J., … Dai, Z. (2018). Decreased intrinsic functional connectivity in first-episode, drug-naive adolescents with generalized anxiety disorder. Frontiers in Human Neuroscience, 12, 539. https://doi.org/10.3389/fnhum.2018.00539.
Zald, D. H., & Treadway, M. T. (2017). Reward processing, neuroeconomics, and psychopathology. Annual Review of Clinical Psychology, 13, 471495. https://doi.org/10.1146/annurev-clinpsy-032816-044957.

Keywords

Type Description Title
WORD
Supplementary materials

Chahal et al. supplementary materia
Chahal et al. supplementary materia

 Word (10.3 MB)
10.3 MB

Neural connectivity biotypes: associations with internalizing problems throughout adolescence

  • Rajpreet Chahal (a1) (a2), David G. Weissman (a3), Michael N. Hallquist (a4), Richard W. Robins (a5), Paul D. Hastings (a2) (a5) and Amanda E. Guyer (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.