Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-26T20:39:34.664Z Has data issue: false hasContentIssue false

Is moderate depression associated with sleep stage architecture in adolescence? Testing the stage type associations using network and transition probability approaches

Published online by Cambridge University Press:  17 December 2019

Marko Elovainio*
Affiliation:
National Institute for Health and Welfare, Helsinki, Finland SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
Jari Lipsanen
Affiliation:
Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
Risto Halonen
Affiliation:
SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
Liisa Kuula
Affiliation:
SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
Katri Räikkönen
Affiliation:
Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
Anu-Katriina Pesonen
Affiliation:
SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
*
Author for correspondence: Marko Elovainio, E-mail: marko.elovainio@helsinki.fi

Abstract

Background

Depression even at the subclinical level is often accompanied by sleep disturbances, but little is known about the dynamics of the sleep stages in relation to depressive symptoms. We examined whether the amount, associations, and transition probabilities of various sleep stages were associated with depressive symptoms in a community sample of adolescents.

Methods

The participants (N = 172, 59% girls, mean age 16.9 years) underwent overnight polysomnography and provided data on depressive symptoms (Beck Depression Inventory II). The association between depression status and total duration of each stage type was analyzed using ANOVA and survival analyses. The associations between the number of different sleep stage types were analyzed using graphical Gaussian models, mixed graphical models, and relative importance networks. A Markov chain algorithm was used to estimate the transition probabilities between each state and these probabilities were further compared between depression status groups.

Results

The associations between N1 and N3 were significantly stronger in both directions of the association (p-values for interactions 0.012 and 0.006) in those with more depressive symptoms. Similarly, a stronger association was observed from N1 to wake stage in those with more depressive symptoms (p-value for interaction 0.002). In those with more depressive symptoms, it was more likely to transition from N2 to N3 and from REM to N2 compared to others.

Conclusions

These findings indicate that changes in sleep architecture are not limited to clinical depression and that the transitional dynamics of sleep stages are an important marker of subclinical depression.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armitage, R. (2007). Sleep and circadian rhythms in mood disorders. Acta Psychiatrica Scandinavica Supplements, 115(433), 104115. doi:10.1111/j.1600-0447.2007.00968.x.CrossRefGoogle Scholar
Baglioni, C., Nanovska, S., Regen, W., Spiegelhalder, K., Feige, B., Nissen, C., … Riemann, D. (2016). Sleep and mental disorders: A meta-analysis of polysomnographic research. Psychological Bulletin, 142(9), 969990. doi:10.1037/bul0000053.CrossRefGoogle ScholarPubMed
Baglioni, C., Regen, W., Teghen, A., Spiegelhalder, K., Feige, B., Nissen, C., & Riemann, D. (2013). Sleep changes in the disorder of insomnia: A meta-analysis of polysomnographic studies. Sleep Medicine Reviews, 18(3), 195213.CrossRefGoogle Scholar
Beck, A. T., Steer, R. A., & Garbin, M. G. (1988). Psychometric properties of the Beck Depression Inventory – 25 years of evaluation. Clinical Psychology Review, 8(1), 77100. doi:10.1016/0272-7358(88)90050-5.CrossRefGoogle Scholar
Bianchi, M. T., Cash, S. S., Mietus, J., Peng, C. K., & Thomas, R. (2010). Obstructive sleep apnea alters sleep stage transition dynamics. PLoS ONE, 5(6), 112. doi:ARTN e1135610.1371/journal.pone.0011356.CrossRefGoogle ScholarPubMed
Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16, 513.CrossRefGoogle ScholarPubMed
Boschloo, L., Schoevers, R. A., van Borkulo, C. D., Borsboom, D., & Oldehinkel, A. J. (2016a). The network structure of psychopathology in a community sample of preadolescents. Journal of Abnormal Psychology, 125(4), 599606. doi:10.1037/abn0000150.CrossRefGoogle Scholar
Boschloo, L., van Borkulo, C. D., Borsboom, D., & Schoevers, R. A. (2016b). A prospective study on how symptoms in a network predict the onset of depression. Psychotherapy and Psychosomatics, 85(3), 183184. doi:10.1159/000442001.CrossRefGoogle Scholar
Chang, C. H., Chen, M. C., Qiu, M. H., & Lu, J. (2014). Ventromedial prefrontal cortex regulates depressive-like behavior and rapid eye movement sleep in the rat. Neuropharmacology, 86, 125132. doi:10.1016/j.neuropharm.2014.07.005.CrossRefGoogle ScholarPubMed
Cheng, P., Goldschmied, J., Deldin, P., Hoffmann, R., & Armitage, R. (2015). The role of fast and slow EEG activity during sleep in males and females with major depressive disorder. Psychophysiology, 52(10), 13751381. doi:10.1111/psyp.12472.CrossRefGoogle ScholarPubMed
DALYs, G. B. D., & Collaborators, H. (2018). Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 392(10159), 18591922. doi:10.1016/S0140-6736(18)32335-3.CrossRefGoogle Scholar
Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain structural and functional abnormalities in mood disorders: Implications for neurocircuitry models of depression. Brain Structure and Function, 213(1–2), 93118. doi:10.1007/s00429-008-0189-x.CrossRefGoogle ScholarPubMed
Epskamp, S., Borsboom, D., & Fried, E. I. (2017). Estimating psychological networks and their accuracy: A tutorial paper. Behavioral Research Methods, 50, 195212. doi:10.3758/s13428-017-0862-1.CrossRefGoogle Scholar
Epskamp, S., Cramer, A. O. J., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. (2012). Qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 48(4), 118.CrossRefGoogle Scholar
Fried, E. I., van Borkulo, C. D., Cramer, A. O., Boschloo, L., Schoevers, R. A., & Borsboom, D. (2017). Mental disorders as networks of problems: A review of recent insights. Social Psychiatry & Psychiatric Epidemiology, 52(1), 110. doi:10.1007/s00127-016-1319-z.CrossRefGoogle ScholarPubMed
Gebara, M. A., Kasckow, J., Smagula, S. F., DiNapoli, E. A., Karp, J. F., Lenze, E. J., … Reynolds, C. F.3rd. (2018a). The role of late life depressive symptoms on the trajectories of insomnia symptoms during antidepressant treatment. Journal of Psychiatry Research, 96, 162166. doi:10.1016/j.jpsychires.2017.10.013.CrossRefGoogle Scholar
Gebara, M. A., Siripong, N., DiNapoli, E. A., Maree, R. D., Germain, A., Reynolds, C. F., … Karp, J. F. (2018b). Effect of insomnia treatments on depression: A systematic review and meta-analysis. Depression and Anxiety, 35(8), 717731. doi:10.1002/da.22776.CrossRefGoogle Scholar
Holm, S. M., Forbes, E. E., Ryan, N. D., Phillips, M. L., Tarr, J. A., & Dahl, R. E. (2009). Reward-related brain function and sleep in pre/early pubertal and mid/late pubertal adolescents. Journal of Adolescent Health, 45(4), 326334. doi:10.1016/j.jadohealth.2009.04.001.CrossRefGoogle ScholarPubMed
Kendler, K. S., Hettema, J. M., Butera, F., Gardner, C. O., & Prescott, C. A. (2003). Life event dimensions of loss, humiliation, entrapment, and danger in the prediction of onsets of major depression and generalized anxiety. Archives of General Psychiatry, 60(8), 789796.CrossRefGoogle ScholarPubMed
Kupfer, D. J. (1976). REM latency: A psychobiologic marker for primary depressive disease. Biological Psychiatry, 11(2), 159174.Google ScholarPubMed
Kuula, L., Pesonen, A. K., Heinonen, K., Kajantie, E., Eriksson, J. G., Andersson, S., … Raikkonen, K. (2018a). Naturally occurring circadian rhythm and sleep duration are related to executive functions in early adulthood. Journal of Sleep Research, 27(1), 113119. doi:10.1111/jsr.12581.CrossRefGoogle Scholar
Kuula, L., Pesonen, A. K., Merikanto, I., Gradisar, M., Lahti, J., Heinonen, K., … Raikkonen, K. (2018b). Development of late circadian preference: Sleep timing from childhood to late adolescence. Journal of Pediatrics, 194, 182189.e181. doi:10.1016/j.jpeds.2017.10.068.CrossRefGoogle Scholar
Lim, A. S., Yu, L., Costa, M. D., Buchman, A. S., Bennett, D. A., Leurgans, S. E., & Saper, C. B. (2011). Quantification of the fragmentation of rest-activity patterns in elderly individuals using a state transition analysis. Sleep, 34(11), 15691581. doi:10.5665/sleep.1400.CrossRefGoogle ScholarPubMed
Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3(11), e442. doi:10.1371/journal.pmed.0030442.CrossRefGoogle ScholarPubMed
Merikanto, I., Lahti, J., Kuula, L., Heinonen, K., Raikkonen, K., Andersson, S., … Pesonen, A. K. (2018). Circadian preference and sleep timing from childhood to adolescence in relation to genetic variants from a genome-wide association study. Sleep Medicine, 50, 3641. doi:10.1016/j.sleep.2018.04.015.CrossRefGoogle ScholarPubMed
O'Malley, M. W., & Datta, S. (2013). REM sleep regulating mechanisms in the cholinergic cell compartment of the brainstem. Indian Journal of Sleep Medicine, 8(2), 5866. doi:10.5958/j.0974-0155.8.2.009.CrossRefGoogle ScholarPubMed
Palagini, L., Baglioni, C., Ciapparelli, A., Gemignani, A., & Riemann, D. (2013). REM sleep dysregulation in depression: State of the art. Sleep Medicine Reviews, 17(5), 377390. doi:10.1016/j.smrv.2012.11.001.CrossRefGoogle ScholarPubMed
Pesonen, A. K., Gradisar, M., Kuula, L., Short, M., Merikanto, I., Tark, R., … Lahti, J. (2018). REM sleep fragmentation associated with depressive symptoms and genetic risk for depression in a community-based sample of adolescents. Journal of Affective Disorders, 245, 757763. doi:10.1016/j.jad.2018.11.077.CrossRefGoogle Scholar
Pesonen, A. K., Martikainen, S., Heinonen, K., Wehkalampi, K., Lahti, J., Kajantie, E., & Raikkonen, K. (2014). Continuity and change in poor sleep from childhood to early adolescence. Sleep, 37(2), 289297. doi:10.5665/sleep.3400.CrossRefGoogle ScholarPubMed
Rao, U., Dahl, R. E., Ryan, N. D., Birmaher, B., Williamson, D. E., Rao, R., & Kaufman, J. (2002). Heterogeneity in EEG sleep findings in adolescent depression: Unipolar versus bipolar clinical course. Journal of Affective Disorders, 70(3), 273280.CrossRefGoogle ScholarPubMed
Riemann, D., Berger, M., & Voderholzer, U. (2001). Sleep and depression--results from psychobiological studies: An overview. Biological Psychology, 57(1-3), 67103.CrossRefGoogle ScholarPubMed
Staner, L. (2010). Comorbidity of insomnia and depression. Sleep Medicine Reviews, 14(1), 3546. doi:10.1016/j.smrv.2009.09.003.CrossRefGoogle ScholarPubMed
Strandberg, T. E., Jarvenpaa, A. L., Vanhanen, H., & McKeigue, P. M. (2001). Birth outcome in relation to licorice consumption during pregnancy. American Journal of Epidemiology, 153(11), 10851088.CrossRefGoogle ScholarPubMed
Tarokh, L., Van Reen, E., LeBourgeois, M., Seifer, R., & Carskadon, M. A. (2011). Sleep EEG provides evidence that cortical changes persist into late adolescence. Sleep, 34(10), 13851393. doi:10.5665/SLEEP.1284.CrossRefGoogle ScholarPubMed
van Borkulo, C., Boschloo, L., Borsboom, D., Penninx, B., Waldorp, L., & Schoevers, R. A. (2015). Association of symptom network structure with the course of depression. JAMA Psychiatry, 72(12), 12191224.CrossRefGoogle Scholar
Wassing, R., Benjamins, J. S., Dekker, K., Moens, S., Spiegelhalder, K., Feige, B., … Van Someren, E. J. (2016). Slow dissolving of emotional distress contributes to hyperarousal. Proceedings of the National Academy of Science of the USA, 113(9), 25382543. doi:10.1073/pnas.1522520113.CrossRefGoogle ScholarPubMed
Weber, F., Hoang Do, J. P., Chung, S., Beier, K. T., Bikov, M., Saffari Doost, M., & Dan, Y. (2018). Regulation of REM and non-REM sleep by periaqueductal GABAergic neurons. Nature Communications, 9(1), 354. doi:10.1038/s41467-017-02765-w.CrossRefGoogle ScholarPubMed
Wei, Y., Colombo, M. A., Ramautar, J. R., Blanken, T. F., van der Werf, Y. D., Spiegelhalder, K., … Van Someren, E. J. W. (2017). Sleep stage transition dynamics reveal specific stage 2 vulnerability in insomnia. Sleep, 40(9), 110. doi:10.1093/sleep/zsx117.Google ScholarPubMed
Whisman, M. A., & Richardson, E. D. (2015). Normative data on the Beck Depression Inventory – second edition (BDI-II) in college students. Journal of Clinical Psychology, 71(9), 898907. doi:10.1002/jclp.22188.CrossRefGoogle Scholar
Wiebe, S. T., Cassoff, J., & Gruber, R. (2012). Sleep patterns and the risk for unipolar depression: A review. Nature and Science of Sleep, 4, 6371. doi:10.2147/NSS.S23490.Google ScholarPubMed
Witten, D. M., Friedman, J. H., & Simon, N. (2011). New insights and faster computations for the graphical lasso. Journal of Computational and Graphical Statistics, 20(4), 892900. doi:10.1198/jcgs.2011.11051a.CrossRefGoogle Scholar
Yetton, B. D., McDevitt, E. A., Cellini, N., Shelton, C., & Mednick, S. C. (2018). Quantifying sleep architecture dynamics and individual differences using big data and Bayesian networks. PLoS ONE, 13(4), e0194604. doi:10.1371/journal.pone.0194604.CrossRefGoogle ScholarPubMed
Supplementary material: File

Elovainio et al. supplementary material

Figures S1-S3

Download Elovainio et al. supplementary material(File)
File 345.8 KB