Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T15:34:23.172Z Has data issue: false hasContentIssue false

Investigating the shared genetic architecture of post-traumatic stress disorder and gastrointestinal tract disorders: a genome-wide cross-trait analysis

Published online by Cambridge University Press:  23 May 2023

Siquan Zhou
Affiliation:
West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
Hang Luo
Affiliation:
West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
Ye Tian
Affiliation:
West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
Haoqi Li
Affiliation:
West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
Yaxian Zeng
Affiliation:
West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
Xiaoyu Wang
Affiliation:
Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
Shufang Shan
Affiliation:
Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
Jingyuan Xiong*
Affiliation:
West China School of Public Health and West China Fourth Hospital, Healthy Food Evaluation Research Center, Sichuan University, Chengdu, China
Guo Cheng
Affiliation:
Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
*
Corresponding author: Jingyuan Xiong; Email: jzx0004@tigermail.auburn.edu

Abstract

Background

Observational studies suggest a correlation between post-traumatic stress disorder (PTSD) and gastrointestinal tract (GIT) disorders. However, the genetic overlap, causal relationships, and underlining mechanisms between PTSD and GIT disorders were absent.

Methods

We obtained genome-wide association study statistics for PTSD (23 212 cases, 151 447 controls), peptic ulcer disease (PUD; 16 666 cases, 439 661 controls), gastroesophageal reflux disease (GORD; 54 854 cases, 401 473 controls), PUD and/or GORD and/or medications (PGM; 90 175 cases, 366 152 controls), irritable bowel syndrome (IBS; 28 518 cases, 426 803 controls), and inflammatory bowel disease (IBD; 7045 cases, 449 282 controls). We quantified genetic correlations, identified pleiotropic loci, and performed multi-marker analysis of genomic annotation, fast gene-based association analysis, transcriptome-wide association study analysis, and bidirectional Mendelian randomization analysis.

Results

PTSD globally correlates with PUD (rg = 0.526, p = 9.355 × 10−7), GORD (rg = 0.398, p = 5.223 × 10−9), PGM (rg = 0.524, p = 1.251 × 10−15), and IBS (rg = 0.419, p = 8.825 × 10−6). Cross-trait meta-analyses identify seven genome-wide significant loci between PTSD and PGM (rs13107325, rs1632855, rs1800628, rs2188100, rs3129953, rs6973700, and rs73154693); three between PTSD and GORD (rs13107325, rs1632855, and rs3132450); one between PTSD and IBS/IBD (rs4937872 and rs114969413, respectively). Proximal pleiotropic genes are mainly enriched in immune response regulatory pathways, and in brain, digestive, and immune systems. Gene-level analyses identify five candidates: ABT1, BTN3A2, HIST1H3J, ZKSCAN4, and ZKSCAN8. We found significant causal effects of GORD, PGM, IBS, and IBD on PTSD. We observed no reverse causality of PTSD with GIT disorders, except for GORD.

Conclusions

PTSD and GIT disorders share common genetic architectures. Our work offers insights into the biological mechanisms, and provides genetic basis for translational research studies.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, J., Gharahkhani, P., Law, M. H., Ong, J. S., Han, X., Olsen, C. M., … MacGregor, S. (2019). Gastroesophageal reflux GWAS identifies risk loci that also associate with subsequent severe esophageal diseases. Nature Communications, 10, 4219. doi:10.1038/s41467-019-11968-2.CrossRefGoogle ScholarPubMed
Bakshi, A., Zhu, Z., Vinkhuyzen, A. A., Hill, W. D., McRae, A. F., Visscher, P. M., & Yang, J. (2016). Fast set-based association analysis using summary data from GWAS identifies novel gene loci for human complex traits. Scientific Reports, 6, 32894. doi:10.1038/srep32894.CrossRefGoogle ScholarPubMed
Bowden, J., Davey Smith, G., Haycock, P. C., & Burgess, S. (2016). Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genetic Epidemiology, 40, 304314. doi:10.1002/gepi.21965.CrossRefGoogle ScholarPubMed
Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Loh, P. R., … Neale, B. M. (2015). An atlas of genetic correlations across human diseases and traits. Nature Genetics, 47, 12361241. doi:10.1038/ng.3406.CrossRefGoogle ScholarPubMed
Burgess, S., Butterworth, A., & Thompson, S. G. (2013). Mendelian randomization analysis with multiple genetic variants using summarized data. Genetic Epidemiology, 37, 658665. doi:10.1002/gepi.21758.CrossRefGoogle ScholarPubMed
Burgess, S., Scott, R. A., Timpson, N. J., Davey Smith, G., Thompson, S. G., & EPIC-InterAct Consortium. (2015). Using published data in Mendelian randomization: A blueprint for efficient identification of causal risk factors. European Journal of Epidemiology, 30, 543552. doi:10.1007/s10654-015-0011-z.CrossRefGoogle ScholarPubMed
Burgess, S., & Thompson, S. G. (2017). Interpreting findings from Mendelian randomization using the MR–Egger method. European Journal of Epidemiology, 32, 377389. doi:10.1007/s10654-017-0255-x.CrossRefGoogle ScholarPubMed
Bycroft, C., Freeman, C., Petkova, D., Band, G., Elliott, L. T., Sharp, K., … Marchini, J. (2018). The UK Biobank resource with deep phenotyping and genomic data. Nature, 562, 203209. doi:10.1038/s41586-018-0579-z.CrossRefGoogle ScholarPubMed
Chen, D., Wang, X., Huang, T., & Jia, J. (2022). Sleep and late-onset Alzheimer's disease: Shared genetic risk factors, drug targets, molecular mechanisms, and causal effects. Frontiers in Genetics, 13, 794202. doi:10.3389/fgene.2022.794202.CrossRefGoogle ScholarPubMed
Clark, A., & Mach, N. (2016). Exercise-induced stress behavior, gut–microbiota–brain axis and diet: A systematic review for athletes. Journal of the International Society of Sports Nutrition, 13, 43. doi:10.1186/s12970-016-0155-6.CrossRefGoogle Scholar
Davidson, J. R. (2000). Trauma: The impact of post-traumatic stress disorder. Journal of Psychopharmacology, 14, S512. doi:10.1177/02698811000142S102.CrossRefGoogle ScholarPubMed
de Leeuw, C. A., Mooij, J. M., Heskes, T., & Posthuma, D. (2015). MAGMA: Generalized gene-set analysis of GWAS data. PLoS Computational Biology, 11, e1004219. doi:10.1371/journal.pcbi.1004219.CrossRefGoogle ScholarPubMed
Drossman, D. A., Tack, J., Ford, A. C., Szigethy, E., Törnblom, H., & Van Oudenhove, L. (2018). Neuromodulators for functional gastrointestinal disorders (disorders of gut–brain interaction): A Rome foundation working team report. Gastroenterology, 154, 11401171.e1. doi:10.1053/j.gastro.2017.11.279.CrossRefGoogle ScholarPubMed
Duncan, L. E., Ratanatharathorn, A., Aiello, A. E., Almli, L. M., Amstadter, A. B., Ashley-Koch, A. E., … Koenen, K. C. (2018). Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Molecular Psychiatry, 23, 666673. doi:10.1038/mp.2017.77.CrossRefGoogle ScholarPubMed
Finucane, H. K., Bulik-Sullivan, B., Gusev, A., Trynka, G., Reshef, Y., Loh, P. R., … Price, A. L. (2015). Partitioning heritability by functional annotation using genome-wide association summary statistics. Nature Genetics, 47, 12281235. doi:10.1038/ng.3404.CrossRefGoogle ScholarPubMed
Finucane, H. K., Reshef, Y. A., Anttila, V., Slowikowski, K., Gusev, A., Byrnes, A., … Price, A. L. (2018). Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nature Genetics, 50, 621629. doi:10.1038/s41588-018-0081-4.CrossRefGoogle ScholarPubMed
Graff, L. A., Walker, J. R., & Bernstein, C. N. (2009). Depression and anxiety in inflammatory bowel disease: A review of comorbidity and management. Inflammatory Bowel Diseases, 15, 11051118. doi:10.1002/ibd.20873.CrossRefGoogle ScholarPubMed
Grinsvall, C., Tornblom, H., Tack, J., Van Oudenhove, L., & Simren, M. (2018). Relationships between psychological state, abuse, somatization and visceral pain sensitivity in irritable bowel syndrome. United European Gastroenterology Journal, 6, 300309. doi:10.1177/2050640617715851.CrossRefGoogle ScholarPubMed
GTEx Consortium, Laboratory, Data Analysis & Coordinating Center (LDACC) – Analysis Working Group, Statistical Methods groups – Analysis Working Group, Enhancing GTEx (eGTEx) groups, NIH Common Fund, NIH/NCI, … Montgomery, S. B. (2017). Genetic effects on gene expression across human tissues. Nature, 550, 204213. doi:10.1038/nature24277.CrossRefGoogle Scholar
Guo, P., Gong, W., Li, Y., Liu, L., Yan, R., Wang, Y., … Yuan, Z. (2022). Pinpointing novel risk loci for Lewy body dementia and the shared genetic etiology with Alzheimer's disease and Parkinson's disease: A large-scale multi-trait association analysis. BMC Medicine, 20, 214. doi:10.1186/s12916-022-02404-2.CrossRefGoogle ScholarPubMed
Hartwig, F. P., Davey Smith, G., & Bowden, J. (2017). Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. International Journal of Epidemiology, 46, 19851998. doi:10.1093/ije/dyx102.CrossRefGoogle ScholarPubMed
Hejazi, R. A., & McCallum, R. W. (2014). Rumination syndrome: A review of current concepts and treatments. American Journal of the Medical Sciences, 348, 324329. doi:10.1097/MAJ.0000000000000229.CrossRefGoogle ScholarPubMed
Henningsen, P., Zimmermann, T., & Sattel, H. (2003). Medically unexplained physical symptoms, anxiety, and depression: A meta-analytic review. Psychosomatic Medicine, 65, 528533. doi:10.1097/01.psy.0000075977.90337.e7.CrossRefGoogle ScholarPubMed
Hu, Y., Li, M., Lu, Q., Weng, H., Wang, J., Zekavat, S. M., … Zhao, H. (2019). A statistical framework for cross-tissue transcriptome-wide association analysis. Nature Genetics, 51, 568576. doi:10.1038/s41588-019-0345-7.CrossRefGoogle ScholarPubMed
Jacenik, D., & Fichna, J. (2020). Chemerin in immune response and gastrointestinal pathophysiology. Clinica Chimica Acta; International Journal of Clinical Chemistry, 504, 146153. doi:10.1016/j.cca.2020.02.008.CrossRefGoogle ScholarPubMed
Jiang, J. X. (2008). Posttraumatic stress and immune dissonance. Chinese Journal of Traumatology, 11, 203208. doi:10.1016/s1008-1275(08)60044-9.CrossRefGoogle ScholarPubMed
Kalappa, B. I., Anderson, C. T., Goldberg, J. M., Lippard, S. J., & Tzounopoulos, T. (2015). AMPA receptor inhibition by synaptically released zinc. Proceedings of the National Academy of Sciences of the United States of America, 112, 1574915754. doi:10.1073/pnas.1512296112.CrossRefGoogle ScholarPubMed
Kebir, H., Kreymborg, K., Ifergan, I., Dodelet-Devillers, A., Cayrol, R., Bernard, M., … Prat, A. (2007). Human TH17 lymphocytes promote blood–brain barrier disruption and central nervous system inflammation. Nature Medicine, 13, 11731175. doi:10.1038/nm1651.CrossRefGoogle ScholarPubMed
Kolacz, J., Kovacic, K. K., & Porges, S. W. (2019). Traumatic stress and the autonomic brain–gut connection in development: Polyvagal theory as an integrative framework for psychosocial and gastrointestinal pathology. Developmental Psychobiology, 61, 796809. doi:10.1002/dev.21852.CrossRefGoogle ScholarPubMed
Leserman, J. (2005). Sexual abuse history: Prevalence, health effects, mediators, and psychological treatment. Psychosomatic Medicine, 67, 906915. doi:10.1097/01.psy.0000188405.54425.20.CrossRefGoogle ScholarPubMed
Li, D., Achkar, J. P., Haritunians, T., Jacobs, J. P., Hui, K. Y., D'Amato, M., … Duerr, R. H. (2016). A pleiotropic missense variant in SLC39A8 is associated with Crohn disease and human gut microbiome composition. Gastroenterology, 151, 724732. doi:10.1053/j.gastro.2016.06.051.CrossRefGoogle ScholarPubMed
Liu, M. J., Bao, S., Gálvez-Peralta, M., Pyle, C. J., Rudawsky, A. C., Pavlovicz, R. E., … Knoell, D. L. (2013). ZIP8 regulates host defense through zinc-mediated inhibition of NF-κB. Cell Reports, 3, 386400. doi:10.1016/j.celrep.2013.01.009.CrossRefGoogle ScholarPubMed
Liu, X., Xie, H., Fu, Z., Yao, Q., Han, T., Zhan, D., … Zhu, H. (2021). MAD1L1 and TSNARE gene polymorphisms are associated with schizophrenia susceptibility in the Han Chinese population. BMC Medical Genomics, 14, 218. doi:10.1186/s12920-021-01070-2.CrossRefGoogle ScholarPubMed
Luo, Q, Chen, Q, Wang, W, Desrivières, S, Quinlan, EB, Jia, T, … IMAGEN Consortium. (2019). Association of a schizophrenia-risk nonsynonymous variant with putamen volume in adolescents. JAMA Psychiatry, 76, 435445. doi:10.1001/jamapsychiatry.2018.4126.CrossRefGoogle ScholarPubMed
McCoy, T. H. Jr., Pellegrini, A. M., & Perlis, R. H. (2019). Using phenome-wide association to investigate the function of a schizophrenia risk locus at SLC39A8. Translational Psychiatry, 9, 45. doi:10.1038/s41398-019-0386-9.CrossRefGoogle ScholarPubMed
Melia, J. M. P., Lin, R., Xavier, R. J., Thompson, R. B., Fu, D., Wan, F., … Donowitz, M. (2019). Induction of the metal transporter ZIP8 by interferon gamma in intestinal epithelial cells: Potential role of metal dyshomeostasis in Crohn's disease. Biochemical and Biophysical Research Communications, 515, 325331. doi:10.1016/j.bbrc.2019.05.137.CrossRefGoogle ScholarPubMed
Nebert, D. W., & Liu, Z. (2019). SLC39A8 gene encoding a metal ion transporter: Discovery and bench to bedside. Human Genomics, 13, 51. doi:10.1186/s40246-019-0233-3.CrossRefGoogle ScholarPubMed
Nievergelt, C. M., Maihofer, A. X., Klengel, T., Atkinson, E. G., Chen, C. Y., Choi, K. W., … Koenen, K. C. (2019). International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nature Communications, 10, 4558. doi:10.1038/s41467-019-12576-w.CrossRefGoogle ScholarPubMed
O'Mahony, S. M., Hyland, N. P., Dinan, T. G., & Cryan, J. F. (2011). Maternal separation as a model of brain–gut axis dysfunction. Psychopharmacology (Berlin), 214, 7188. doi:10.1007/s00213-010-2010-9.CrossRefGoogle Scholar
Pan, Q., Liu, Y. J., Bai, X. F., Han, X. L., Jiang, Y., Ai, B., … Li, C. Q. (2021). VARAdb: A comprehensive variation annotation database for human. Nucleic Acids Research, 49, D1431D1444. doi:10.1093/nar/gkaa922.CrossRefGoogle ScholarPubMed
Pickrell, J. K., Berisa, T., Liu, J. Z., Segurel, L., Tung, J. Y., & Hinds, D. A. (2016). Detection and interpretation of shared genetic influences on 42 human traits. Nature Genetics, 48, 709717. doi:10.1038/ng.3570.CrossRefGoogle ScholarPubMed
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., … Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81, 559575. doi:10.1086/519795.CrossRefGoogle ScholarPubMed
Ray, D., & Chatterjee, N. (2020). A powerful method for pleiotropic analysis under composite null hypothesis identifies novel shared loci between type 2 diabetes and prostate cancer. PLoS Genetics, 16, e1009218. doi:10.1371/journal.pgen.1009218.CrossRefGoogle ScholarPubMed
Ray, D., Venkataraghavan, S., Zhang, W., Leslie, E. J., Hetmanski, J. B., Weinberg, S. M., … Beaty, T. H. (2021). Pleiotropy method reveals genetic overlap between orofacial clefts at multiple novel loci from GWAS of multi-ethnic trios. PLoS Genetics, 17, e1009584. doi:10.1371/journal.pgen.1009584.CrossRefGoogle ScholarPubMed
Roth, W., Zadeh, K., Vekariya, R., Ge, Y., & Mohamadzadeh, M. (2021). Tryptophan metabolism and gut–brain homeostasis. International Journal of Molecular Sciences, 22, 2973. doi:10.3390/ijms22062973.CrossRefGoogle ScholarPubMed
Schizophrenia Working Group of the Psychiatric Genomes Consortium (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511, 421427. doi:10.1038/nature13595.CrossRefGoogle Scholar
Shiwaku, H., Katayama, S., Kondo, K., Nakano, Y., Tanaka, H., Yoshioka, Y., … Takahashi, H. (2022). Autoantibodies against NCAM1 from patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. Cell Reports Medicine, 3, 100597. doi:10.1016/j.xcrm.2022.100597.CrossRefGoogle ScholarPubMed
Tadros, R., Francis, C., Xu, X., Vermeer, A. M. C., Harper, A. R., Huurman, R., … Bezzina, C. R. (2021). Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect. Nature Genetics, 53, 128134. doi:10.1038/s41588-020-00762-2.CrossRefGoogle ScholarPubMed
Tseng, W. C., Reinhart, V., Lanz, T. A., Weber, M. L., Pang, J., Le, K. X. V., … Buhl, D. L. (2021). Schizophrenia-associated SLC39A8 polymorphism is a loss-of-function allele altering glutamate receptor and innate immune signaling. Translational Psychiatry, 11, 136. doi:10.1038/s41398-021-01262-5.CrossRefGoogle ScholarPubMed
Turley, P., Walters, R. K., Maghzian, O., Okbay, A., Lee, J. J., Fontana, M. A., … Benjamin, D. J. (2018). Multi-trait analysis of genome-wide association summary statistics using MTAG. Nature Genetics, 50, 229237. doi:10.1038/s41588-017-0009-4.CrossRefGoogle ScholarPubMed
Vannucchi, M. G., & Evangelista, S. (2018). Experimental models of irritable bowel syndrome and the role of the enteric neurotransmission. Journal of Clinical Medicine, 7, 4. doi:10.3390/jcm7010004.CrossRefGoogle ScholarPubMed
Verbanck, M., Chen, C. Y., Neale, B., & Do, R. (2018). Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nature Genetics, 50, 693698. doi:10.1038/s41588-018-0099-7.CrossRefGoogle ScholarPubMed
Watanabe, K., Stringer, S., Frei, O., Umicevic Mirkov, M., de Leeuw, C., Polderman, T. J. C., … Posthuma, D. (2019). A global overview of pleiotropy and genetic architecture in complex traits. Nature Genetics, 51, 13391348. doi:10.1038/s41588-019-0481-0.CrossRefGoogle ScholarPubMed
Watanabe, K., Taskesen, E., van Bochoven, A., & Posthuma, D. (2017). Functional mapping and annotation of genetic associations with FUMA. Nature Communications, 8, 1826. doi:10.1038/s41467-017-01261-5.CrossRefGoogle ScholarPubMed
Wendt, F. R., Pathak, G. A., Deak, J. D., De Angelis, F., Koller, D., Cabrera-Mendoza, B., … Polimanti, R. (2022). Using phenotype risk scores to enhance gene discovery for generalized anxiety disorder and posttraumatic stress disorder. Molecular Psychiatry, 27, 22062215. doi:10.1038/s41380-022-01469-y.CrossRefGoogle ScholarPubMed
Wu, Y., Bi, R., Zeng, C., Ma, C., Sun, C., Li, J., … Yao, Y. G. (2019). Identification of the primate-specific gene BTN3A2 as an additional schizophrenia risk gene in the MHC loci. EBioMedicine, 44, 530541. doi:10.1016/j.ebiom.2019.05.006.CrossRefGoogle ScholarPubMed
Wu, Y., Murray, G. K., Byrne, E. M., Sidorenko, J., Visscher, P. M., & Wray, N. R. (2021). GWAS of peptic ulcer disease implicates Helicobacter pylori infection, other gastrointestinal disorders and depression. Nature Communications, 12, 1146. doi:10.1038/s41467-021-21280-7.CrossRefGoogle ScholarPubMed
Yang, Y., Musco, H., Simpson-Yap, S., Zhu, Z., Wang, Y., Lin, X., … Zhou, Y. (2021). Investigating the shared genetic architecture between multiple sclerosis and inflammatory bowel diseases. Nature Communications, 12, 5641. doi:10.1038/s41467-021-25768-0.CrossRefGoogle ScholarPubMed
Zerbino, D. R., Achuthan, P., Akanni, W., Amode, M. R., Barrell, D., Bhai, J., … Flicek, P. (2018). Ensembl 2018. Nucleic Acids Research, 46, D754D761. doi:10.1093/nar/gkx1098.CrossRefGoogle ScholarPubMed
Zhang, Y., Lu, Q., Ye, Y., Huang, K., Liu, W., Wu, Y., … Zhao, H. (2021). SUPERGNOVA: Local genetic correlation analysis reveals heterogeneous etiologic sharing of complex traits. Genome Biology, 22, 262. doi:10.1186/s13059-021-02478-w.CrossRefGoogle ScholarPubMed
Zhu, M., Yan, C., Ren, C., Huang, X., Zhu, X., Gu, H., … Jin, G. (2017). Exome array analysis identifies variants in SPOCD1 and BTN3A2 that affect risk for gastric cancer. Gastroenterology, 152, 20112021. doi:10.1053/j.gastro.2017.02.017.CrossRefGoogle ScholarPubMed
Supplementary material: File

Zhou et al. supplementary material 1
Download undefined(File)
File 2.6 MB
Supplementary material: File

Zhou et al. supplementary material 2
Download undefined(File)
File 1.8 MB