Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T11:52:22.126Z Has data issue: false hasContentIssue false

The impact of personality on the risk and survival of breast cancer: a Mendelian randomization analysis

Published online by Cambridge University Press:  11 August 2021

Li Ying
Affiliation:
Department of Orthopaedics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang 317000, China School of Medicine, Zhejiang University, Hangzhou, 310058, China
Songzan Chen
Affiliation:
School of Medicine, Zhejiang University, Hangzhou, 310058, China Department of Cardiology, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou 310000, China
Ling Li
Affiliation:
School of Medicine, Zhejiang University, Hangzhou, 310058, China Laboratory of Cancer Biology, Key Lab of Biotherapy in Zhejiang, Sir Run Run Shaw Hospital, Medical School of Zhejiang University, Hangzhou 310000, China
Zhijun Pan*
Affiliation:
Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
*
Author for correspondence: Zhijun Pan, E-mail: zrpzj@zju.edu.cn

Abstract

Background

It has long been hypothesized that personality plays a causative role in incidence and outcome of breast cancer (BC), but epidemiological evidence of association between personality and BC is inconsistent.

Method

We used two-sample Mendelian randomization analysis to estimate the impact of personality on the risk and survival of BC. In total, 109 single nucleotide polymorphisms (SNPs) were utilized as instruments of neuroticism from a large-scale Genome-Wide Association Studies (GWAS), and five SNPs were utilized as instruments of extraversion from Genetic of Personality Consortium and 23andMe. Genetic association with the risk and survival of overall and individual subtype BC were obtained from the Breast Cancer Association Consortium.

Result

Neuroticism is significantly associated with the risk of overall BC [odds ratio (OR) 1.06; 95% confidence interval (CI) 1.01–1.11; p = 0.015] and the risk of luminal A BC (OR 1.09; 95% CI 1.03–1.16; p = 0.004). Extraversion is not associated with the risk of BC. None of neuroticism or extraversion is associated with the survival of BC.

Conclusion

Neuroticism was associated with a modest increased risk of BC and particularly luminal A BC.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antoni, M. H., Lutgendorf, S. K., Cole, S. W., Dhabhar, F. S., Sephton, S. E., McDonald, P. G., … Sood, A. K. (2006). The influence of bio-behavioural factors on tumour biology: Pathways and mechanisms. Nature Reviews Cancer, 6(3), 240248. doi: 10.1038/nrc1820CrossRefGoogle ScholarPubMed
Arnold, M., Raffler, J., Pfeufer, A., Suhre, K., & Kastenmuller, G. (2015). SNiPA: An interactive, genetic variant-centered annotation browser. Bioinformatics (Oxford, England), 31(8), 13341336. doi: 10.1093/bioinformatics/btu779Google ScholarPubMed
Barlow, D. H., Ellard, K. K., Sauer-Zavala, S., Bullis, J. R., & Carl, J. R. (2014). The origins of neuroticism. Perspectives on Psychological Science, 9(5), 481496. doi: 10.1177/1745691614544528CrossRefGoogle ScholarPubMed
Bouhuys, A. L., Flentge, F., Oldehinkel, A. J., & van den Berg, M. D. (2004). Potential psychosocial mechanisms linking depression to immune function in elderly subjects. Psychiatry Research, 127(3), 237245. doi: 10.1016/j.psychres.2004.05.001CrossRefGoogle ScholarPubMed
Bowden, J., Davey Smith, G., & Burgess, S. (2015). Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression. International Journal of Epidemiology, 44(2), 512525. doi: 10.1093/ije/dyv080CrossRefGoogle ScholarPubMed
Bowden, J., Del Greco, M. F., Minelli, C., Smith, G. D., Sheehan, N. A., & Thompson, J. R. (2016). Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: The role of the I-2 statistic. International Journal of Epidemiology, 45(6), 19611974. doi: 10.1093/ije/dyw220Google Scholar
Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394424. doi: 10.3322/caac.21492Google ScholarPubMed
Brion, M. J. A., Shakhbazov, K., & Visscher, P. M. (2013). Calculating statistical power in Mendelian randomization studies. International Journal of Epidemiology, 42(5), 14971501. doi: 10.1093/ije/dyt179CrossRefGoogle ScholarPubMed
Burgess, S., Dudbridge, F., & Thompson, S. G. (2016). Combining information on multiple instrumental variables in Mendelian randomization: Comparison of allele score and summarized data methods. Statistics in Medicine, 35(11), 18801906. doi: 10.1002/sim.6835CrossRefGoogle ScholarPubMed
Burgess, S., & Thompson, S. G. (2017). Interpreting findings from Mendelian randomization using the MR-Egger method. European Journal of Epidemiology, 32(5), 377389. doi: 10.1007/s10654-017-0255-xCrossRefGoogle ScholarPubMed
Butow, P. N., Hiller, J. E., Price, M. A., Thackway, S. V., Kricker, A., & Tennant, C. C. (2000). Epidemiological evidence for a relationship between life events, coping style, and personality factors in the development of breast cancer. Journal of Psychosomatic Research, 49(3), 169181. doi: Doi 10.1016/S0022-3999(00)00156-2CrossRefGoogle ScholarPubMed
Carver, C. S., & Connor-Smith, J. (2010). Personality and coping. Annual Review of Psychology, 61, 679704. doi: 10.1146/annurev.psych.093008.100352CrossRefGoogle ScholarPubMed
Clark, G. M., McGuire, W. L., Hubay, C. A., Pearson, O. H., & Carter, A. C. (1983). The importance of estrogen and progesterone receptor in primary breast cancer. Progress in Clinical and Biological Research, 132E, 183190.Google ScholarPubMed
Dahl, A. A. (2010). Link between personality and cancer. Future Oncology, 6(5), 691707. doi: 10.2217/Fon.10.31CrossRefGoogle ScholarPubMed
Escala-Garcia, M., Guo, Q., Dork, T., Canisius, S., Keeman, R., Dennis, J., … Schmidt, M. K. (2019). Genome-wide association study of germline variants and breast cancer-specific mortality. British Journal of Cancer, 120(6), 647657. doi: 10.1038/s41416-019-0393-xCrossRefGoogle ScholarPubMed
Friedman, H. S., & Kern, M. L. (2014). Personality, well-being, and health. Annual Review of Psychology, 65(65), 719742. doi: 10.1146/annurev-psych-010213-115123CrossRefGoogle ScholarPubMed
Goldhirsch, A., Winer, E. P., Coates, A. S., Gelber, R. D., Piccart-Gebhart, M., Thurlimann, B., … Panel, M. (2013). Personalizing the treatment of women with early breast cancer: Highlights of the St Gallen international expert consensus on the primary therapy of early breast cancer 2013. Annals of Oncology, 24(9), 22062223. doi: 10.1093/annonc/mdt303CrossRefGoogle ScholarPubMed
Hakulinen, C., Hintsanen, M., Munafo, M. R., Virtanen, M., Kivimaki, M., Batty, G. D., & Jokela, M. (2015). Personality and smoking: Individual-participant meta-analysis of nine cohort studies. Addiction, 110(11), 18441852. doi: 10.1111/add.13079CrossRefGoogle ScholarPubMed
Harbeck, N., & Gnant, M. (2017). Breast cancer. The Lancet, 389(10074), 11341150. doi: 10.1016/s0140-6736(16)31891-8CrossRefGoogle ScholarPubMed
Harbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., … Cardoso, F. (2019). Breast cancer. Nature Reviews Disease Primers, 5(1), 66. doi: 10.1038/s41572-019-0111-2CrossRefGoogle ScholarPubMed
Heilbrun, A. B. Jr., & Friedberg, E. B. (1988). Type A personality, self-control, and vulnerability to stress. Journal of Personality Assessment, 52(3), 420433. doi: 10.1207/s15327752jpa5203_3CrossRefGoogle ScholarPubMed
Hemani, G., Zheng, J., Elsworth, B., Wade, K. H., Haberland, V., Baird, D., … Haycock, P. C. (2018). The MR-Base platform supports systematic causal inference across the human phenome. Elife, 7, e34408. doi: 10.7554/eLife.34408.CrossRefGoogle ScholarPubMed
Hettema, J. M., Neale, M. C., Myers, J. M., Prescott, C. A., & Kendler, K. S. (2006). A population-based twin study of the relationship between neuroticism and internalizing disorders. American Journal of Psychiatry, 163(5), 857864. doi: 10.1176/ajp.2006.163.5.857CrossRefGoogle ScholarPubMed
Hilakivi-Clarke, L., Rowland, J., Clarke, R., & Lippman, M. E. (1994). Psychosocial factors in the development and progression of breast cancer. Breast Cancer Research and Treatment, 29(2), 141160. doi: 10.1007/BF00665676CrossRefGoogle ScholarPubMed
John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative big five trait taxonomy: History, measurement, and conceptual issues. In John, O. P., Robins, R. W. & Pervin, L. A. (Eds.), Handbook of personality: Theory and research (3rd ed., pp. 114158). New York: Guilford Press.Google Scholar
Jokela, M., Batty, G. D., Hintsa, T., Elovainio, M., Hakulinen, C., & Kivimaki, M. (2014). Is personality associated with cancer incidence and mortality? An individual-participant meta-analysis of 2156 incident cancer cases among 42843 men and women. British Journal of Cancer, 110(7), 18201824. doi: 10.1038/bjc.2014.58CrossRefGoogle Scholar
Kuntsche, E., Knibbe, R., Gmel, G., & Engels, R. (2006). Who drinks and why? A review of socio-demographic, personality, and contextual issues behind the drinking motives in young people. Addictive Behaviors, 31(10), 18441857. doi: 10.1016/j.addbeh.2005.12.028CrossRefGoogle Scholar
Lahey, B. B. (2009). Public health significance of neuroticism. American Psychologist, 64(4), 241256. doi: 10.1037/a0015309CrossRefGoogle ScholarPubMed
Lawlor, D. A., Harbord, R. M., Sterne, J. A. C., Timpson, N., & Smith, G. D. (2008). Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Statistics in Medicine, 27(8), 11331163. doi: 10.1002/sim.3034CrossRefGoogle ScholarPubMed
Lemogne, C., Consoli, S. M., Geoffroy-Perez, B., Coeuret-Pellicer, M., Nabi, H., Melchior, M., … Cordier, S. (2013). Personality and the risk of cancer: A 16-year follow-up study of the GAZEL cohort. Psychosomatic Medicine, 75(3), 262271. doi: 10.1097/PSY.0b013e31828b5366CrossRefGoogle Scholar
Lillberg, K., Verkasalo, P. K., Kaprio, J., Helenius, H., & Koskenvuo, M. (2002). Personality characteristics and the risk of breast cancer: A prospective cohort study. International Journal of Cancer, 100(3), 361366. doi: 10.1002/ijc.10484CrossRefGoogle ScholarPubMed
Little, M. (2018). Mendelian randomization: Methods for using genetic variants in causal estimation. Journal of the Royal Statistical Society Series a-Statistics in Society, 181(2), 549550. doi: 10.1111/rssa.12343CrossRefGoogle Scholar
Lo, M. T., Hinds, D. A., Tung, J. Y., Franz, C., Fan, C. C., Wang, Y., … Chen, C. H. (2017). Genome-wide analyses for personality traits identify six genomic loci and show correlations with psychiatric disorders. Nature Genetics, 49(1), 152156. doi: 10.1038/ng.3736CrossRefGoogle ScholarPubMed
Luciano, M., Hagenaars, S. P., Davies, G., Hill, W. D., Clarke, T. K., Shirali, M., … Deary, I. J. (2018). Association analysis in over 329000 individuals identifies 116 independent variants influencing neuroticism. Nature Genetics, 50(1), 611. doi: 10.1038/s41588-017-0013-8CrossRefGoogle Scholar
Michailidou, K., Lindstrom, S., Dennis, J., Beesley, J., Hui, S., Kar, S., … Easton, D. F. (2017). Association analysis identifies 65 new breast cancer risk loci. Nature, 551(7678), 9294. doi: 10.1038/nature24284CrossRefGoogle ScholarPubMed
Minami, Y., Hosokawa, T., Nakaya, N., Sugawara, Y., Nishino, Y., Kakugawa, Y., … Tsuji, I. (2015). Personality and breast cancer risk and survival: The Miyagi cohort study. Breast Cancer Research and Treatment, 150(3), 675684. doi: 10.1007/s10549-015-3364-9CrossRefGoogle ScholarPubMed
Morissette, S. B., Tull, M. T., Gulliver, S. B., Kamholz, B. W., & Zimering, R. T. (2007). Anxiety, anxiety disorders, tobacco use, and nicotine: A critical review of interrelationships. Psychological Bulletin, 133(2), 245272. doi: 10.1037/0033-2909.133.2.245CrossRefGoogle ScholarPubMed
Murray, G., Allen, N. B., Trinder, J., & Burgess, H. (2002). Is weakened circadian rhythmicity a characteristic of neuroticism? Journal of Affective Disorders, 72(3), 281289. doi: Pii S0165-0327(02)00465-7 Doi 10.1016/S0165-0327(01)00465-7CrossRefGoogle ScholarPubMed
Nakaya, N., Bidstrup, P. E., Saito-Nakaya, K., Frederiksen, K., Koskenvuo, M., Pukkala, E., … Johansen, C. (2010). Personality traits and cancer risk and survival based on Finnish and Swedish registry data. American Journal of Epidemiology, 172(4), 377385. doi: 10.1093/aje/kwq046CrossRefGoogle ScholarPubMed
Nakaya, N., Hansen, P. E., Schapiro, I. R., Eplov, L. F., Saito-Nakaya, K., Uchitomi, Y., & Johansen, C. (2006). Personality traits and cancer survival: A Danish cohort study. British Journal of Cancer, 95(2), 146152. doi: 10.1038/sj.bjc.6603244CrossRefGoogle ScholarPubMed
Navrady, L. B., Adams, M. J., Chan, S. W. Y., Ritchie, S. J., McIntosh, A. M., & Working, M. D. D. (2018). Genetic risk of major depressive disorder: The moderating and mediating effects of neuroticism and psychological resilience on clinical and self-reported depression. Psychological Medicine, 48(11), 18901899. doi: 10.1017/S0033291717003415CrossRefGoogle ScholarPubMed
Navrady, L. B., Ritchie, S. J., Chan, S. W. Y., Kerr, D. M., Adams, M. J., Hawkins, E. H., … McIntosh, A. M. (2017). Intelligence and neuroticism in relation to depression and psychological distress: Evidence from two large population cohorts. European Psychiatry, 43, 5865. doi: 10.1016/j.eurpsy.2016.12.012CrossRefGoogle ScholarPubMed
Norris, C. J., Larsen, J. T., & Cacioppo, J. T. (2007). Neuroticism is associated with larger and more prolonged electrodermal responses to emotionally evocative pictures. Psychophysiology, 44(5), 823826. doi: 10.1111/j.1469-8986.2007.00551.xCrossRefGoogle ScholarPubMed
Otonari, J., Nagano, J., Morita, M., Budhathoki, S., Tashiro, N., Toyomura, K., … Takayanagi, R. (2012). Neuroticism and extraversion personality traits, health behaviours, and subjective well-being: The Fukuoka Study (Japan). Quality of Life Research, 21(10), 18471855. doi: 10.1007/s11136-011-0098-yCrossRefGoogle ScholarPubMed
Reznikoff, M. (1955). Psychological factors in breast cancer; a preliminary study of some personality trends in patients with cancer of the breast. Psychosomatic Medicine, 17(2), 96108. doi: 10.1097/00006842-195503000-00002CrossRefGoogle ScholarPubMed
Smeland, O. B., Wang, Y. P., Lo, M. T., Li, W., Frei, O., Witoelar, A., … Andreassen, O. A. (2017). Identification of genetic loci shared between schizophrenia and the Big Five personality traits. Scientific Reports, 7(1), 2222. doi: 10.1038/s41598-017-02346-3.CrossRefGoogle ScholarPubMed
Soler-Vila, H., Kasl, S. V., & Jones, B. A. (2003). Prognostic significance of psychosocial factors in African-American and white breast cancer patients: A population-based study. Cancer, 98(6), 12991308. doi: 10.1002/cncr.11670CrossRefGoogle ScholarPubMed
Soygur, H., Palaoglu, O., Akarsu, E. S., Cankurtaran, E. S., Ozalp, E., Turhan, L., & Ayhan, I. H. (2007). Interleukin-6 levels and HPA axis activation in breast cancer patients with major depressive disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 31(6), 12421247. doi: 10.1016/j.pnpbp.2007.05.001CrossRefGoogle ScholarPubMed
Turiano, N. A., Mroczek, D. K., Moynihan, J., & Chapman, B. P. (2013). Big 5 personality traits and interleukin-6: Evidence for ‘healthy Neuroticism’ in a US population sample. Brain Behavior and Immunity, 28, 8389. doi: 10.1016/j.bbi.2012.10.020CrossRefGoogle Scholar
Van Os, J., & Jones, P. B. (2001). Neuroticism as a risk factor for schizophrenia. Psychological Medicine, 31(6), 11291134. doi: Doi 10.1017/S0033291701004044CrossRefGoogle ScholarPubMed
Verbanck, M., Chen, C. Y., Neale, B., & Do, R. (2018). Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases (vol 50, 693, 2018). Nature Genetics, 50(8), 1196. doi: 10.1038/s41588-018-0164-2CrossRefGoogle Scholar
Vukasovic, T., & Bratko, D. (2015). Heritability of personality: A meta-analysis of behavior genetic studies. Psychological Bulletin, 141(4), 769785. doi: 10.1037/bul0000017CrossRefGoogle ScholarPubMed
Watson, M., Homewood, J., Haviland, J., & Bliss, J. M. (2005). Influence of psychological response on breast cancer survival: 10-year follow-up of a population-based cohort. European Journal of Cancer, 41(12), 17101714. doi: 10.1016/j.ejca.2005.01.012CrossRefGoogle ScholarPubMed
Williams, C., & Lin, C. Y. (2013). Oestrogen receptors in breast cancer: Basic mechanisms and clinical implications. Ecancermedicalscience, 7, 370. doi: 10.3332/ecancer.2013.370Google ScholarPubMed
Zhao, Q. Y., Wang, J. S., Hemani, G., Bowden, J., & Small, D. S. (2020). Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. Annals of Statistics, 48(3), 17421769. doi: 10.1214/19-Aos1866CrossRefGoogle Scholar
Zhuo, C. J., & Triplett, P. T. (2018). Association of schizophrenia with the risk of breast cancer incidence a meta-analysis. Jama Psychiatry, 75(4), 363369. doi: 10.1001/jamapsychiatry.2017.4748CrossRefGoogle ScholarPubMed
Zilberman, N., Yadid, G., Efrati, Y., Neumark, Y., & Rassovsky, Y. (2018). Personality profiles of substance and behavioral addictions. Addictive Behaviors, 82, 174181. doi: 10.1016/j.addbeh.2018.03.007CrossRefGoogle ScholarPubMed
Supplementary material: File

Ying et al. supplementary material

Ying et al. supplementary material

Download Ying et al. supplementary material(File)
File 5.8 MB