Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T06:13:04.963Z Has data issue: false hasContentIssue false

How do the neuropathological changes of schizophrenia relate to pre-existing neurotransmitter and aetiological hypotheses?1

Published online by Cambridge University Press:  09 July 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorial
Copyright
Copyright © Cambridge University Press 1989

References

Alzheimer, A. (1897). Beiträge zur pathologischen Anatomie der Hirnrinde und zur anatomischen Grundlage einiger Psychosen. Monatschrift Psychiatrie Neurologie 2, 82119.Google Scholar
Andreason, N. C. (1986). Is schizophrenia a limbic disease? In Can Schizophrenia be Localized in the Brain? (ed. Andreason, N. C.), pp. 3952. American Psychiatric Press: Washington.Google Scholar
Andreason, N., Nasrallah, H. A., Dunn, V., Olson, S. C., Grove, W. M., Ehrhardt, J. C., Coffmann, J. A. & Gossett, J. H. W. (1986). Structural abnormalities in the frontal system in schizophrenia. Archives of General Psychiatry 43, 136144.Google Scholar
Balslev-Jorgensson, M. & Diemer, N. H. (1982). Selective neuron loss after cerebral ischaemia in the rat: possible role of transmitter glutamate. Acta Neurologica Scandinavica 66, 536546.Google Scholar
Beckstead, R. M., Domesick, V. B. & Nauta, W. J. H (1979). Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Research 175, 191217.CrossRefGoogle ScholarPubMed
Björklund, A. & Lindvall, O. (1984). Dopamine containing systems in the CNS. In Handbook of Chemical Neuroanatomy, Vol. 2, (ed. Björklund, A. and Hökfelt, T.), pp. 59122. Elsevier: Amsterdam.Google Scholar
Benes, F. M., Davidson, J. & Bird, E. D. (1986). Quantitative cytocychitectural studies of the cerebral cortex of schizophrenics. Archives of General Psychiatry 43, 3135.Google Scholar
Bogerts, B. (1984). Zur Neuropathologie der Schizophrenien. Fortschritte der Neurologie und Psychiatrie 52, 428437.Google Scholar
Bogerts, B., Meertz, E. & Schonfeldt-Bausch, R. (1985). Basal ganglia and limbic system pathology in schizophrenia. A morphometric study of brain volume and shrinkage. Archives of General Psychiatry 42, 784791.Google Scholar
Brown, R., Colter, N., Corsellis, J. A. N., Crow, T. J., Frith, C. D., Jagoe, E., Johnstone, E. C. & Marsh, L. (1986). Postmortem evidence of structural brain changes in schizophrenia. Archives of General Psychiatry 43, 3642.Google Scholar
Buchsbaum, M. S., DeLisi, L., Holcamb, H. H., Cappaletti, J., King, A. C., Johnson, J., Hazlett, E., Dowling-Zimmerman, S., Post, R. M., Morihasa, J., Carpenter, W., Cohen, R., Pickey, D., Weinberger, D. R., Margolin, R. & Kessler, R. M. (1984). Anteroposterior gradients in cerebral glucose use in schizophrenia and affective disorders. Archives of General Psychiatry 41, 11591166.CrossRefGoogle ScholarPubMed
Colon, E. J. (1972). Quantitative cytoarchitectonics of the human cerebral cortex in schizophrenic dementia. Acta Neuropathologica 20, 110.Google Scholar
Crow, T J. (1987). The dopamine hypothesis survives, but there must be a way ahead. British Journal of Psychiatry 151, 460461.Google Scholar
Csernansky, J. G., Kerr, S, Pruthi, R. & Prosser, E. S. (1988). Mesolimbic dopamine receptor increases two weeks following hippocampal kindling. Brain Research 449, 357360.Google Scholar
Deakin, J. F. W (1988). The neurochemistry of schizophrenia. In Schizophrenia: The Major Issues (ed. McGuffin, P. and Bebbington, P.), pp. 5672. Mental Health Foundation: London.Google Scholar
De France, J. F., Marchand, J. E., Stanley, J. C., Sikes, R. W. & Chronister, R. B. (1980). Convergence of excitatory amygdaloid and hippocampal input in the nucleus accumbens septi. Brain Research 185, 183186.Google Scholar
Dodd, J. R. & Kelly, J. S. (1981). The actions of cholecystokinin and related peptides on pyramidal neurons of mammalian hippocampus. Brain Research 205, 337350.Google Scholar
Eckenhoff, M. F. & Rakic, P. (1984). Radial organization of the hippocampal dentate gyrus: a golgi ultrastructural and immunocytochemical analysis in the developing rhesus monkey. Journal of Comparative Neurology 223, 121.Google Scholar
Falkai, P. & Bogerts, B. (1986). Cell loss in the hippocampus of schizophrenics. European Archives of Psychiatry and Neurological Science 236, 154161.CrossRefGoogle ScholarPubMed
Farmery, S. M., Owen, F., Poulter, M. & Crow, T. J. (1985). Reduced high affinity chloecystokinin binding in hippocampus and frontal cortex of schizophrenic patients. Life Science 36, 473477.Google Scholar
Ferrier, I. N., Roberts, G. W., Crow, T. J., Johnstone, E. C., Owens, D. G. C., Lee, Y. C., O'Shaughnessy, D., Adrian, T. E., Polak, J. M. & Bloom, S. R. (1983). Reduced cholecystokinin like and somatostatin like immunoreactivity in limbic lobe is associated with negative symptoms in schizophrenia. Life Science 33, 475482.Google Scholar
Fuxe, K., Hökfelt, T., Johansson, O., Jonsson, G., Lidbrink, P., & Ljungdahl, A. (1974). The origin of the dopamine nerve terminals in limbic and frontal cortex. Evidence for mesocortical dopamine neurones. Brain Research 82, 349355.Google Scholar
Fuxe, K., Anderson, K., Lacatelli, V., Agnati, L. F., Hökfelt, T., Skirboll, L. & Mutt, V. (1980). Cholecystokinin peptides produce marked reduction of dopamine turnover in discrete areas in the rat brain following intraventricular injection. European Journal of Pharmacology 67, 325331.Google Scholar
Hökfelt, T., Skirboll, L., Rehfeld, J. G., Goldstein, M., Markey, K. & Dann, O. (1980). A subpopulation of mesencephalic dopamine neurones projecting to limbic areas contain a cholecytokinin-like peptide: evidence from immunohistochemistry combined with retrograde tracing. Neuroscience 5, 20932124.Google Scholar
Ishikawa, K.Ott, T. & McGaugh, J. L. (1982) Evidence for dopamine as a transmitter in dorsal hippocampus. Brain Research 232, 222226.Google Scholar
Iversen, L. L. (1987). Commentary on Dinan's hypothesis. British Journal of Psychiatry 151, 459460.Google Scholar
Jakob, W. & Beckmann, H. (1986). Prenatal developmental disturbances in the limbic allocortex in schizophrenics. Journal of Neural Transmission 65, 303326.Google Scholar
Jacobi, W. & Winkler, H. (1927). Encephalographische Studien an chronisch Schizophrenien. Archive für Psychiatrie und Nervenkrankheiten 81, 299332.Google Scholar
Johnstone, E. C., Crow, T. J., Frith, C. D., Husband, J. & Kreel, L. (1976). Cerebral ventricular size and cognitive impairment in chronic schizophrenia. Lancet ii, 924926.Google Scholar
Johansen, F. F., Balslev-Jorgenson, M. & Diemer, N. H. (1983). Resistance of hippocampal CAI intraneurons to 20 min of transient cerebral ischaemia in the rat. Acta Neuropathologica 61, 135140.Google Scholar
Kerwin, R. W. (1988) Pathology, phenomenology and the dopamine hypothesis of schizophrenia (letter). British Journal of Psychiatry 152, 141142.CrossRefGoogle Scholar
Kerwin, R. W., Patel, S., Meldrum, B. S., Czudeck, C. & Reynolds, G. P. (1988). Asymmetrical loss of a glutamate receptor subtype in left hippocampus in post-mortem schizophrenic brain. Lancet i, 583584.CrossRefGoogle Scholar
Kleinman, J. E., Iadorola, M., Govoni, S., Hong, J, Gillin, J. C & Wyatt, R. J. (1983). Post-mortem measurement of neuropeptides in human brain. Psychopharmacology 87, 292297.Google Scholar
Kornhuber, J., Riederer, P., Reynolds, G. P. & Kim, J. S. (1988). Glutamatergic abnormality in schizophrenia. Schizophrenia Research 1, 144145.Google Scholar
Kovelman, J. A. and Scheibel, A. B. (1984). A neurohistological correlate of schizophrenia Biological Psychiatry 19, 16021621.Google Scholar
Kraepelin, E. (1950) Dementia Praecox and Paraphrenia. (Translated by Zinkin, J..) International Universities Press: New YorkGoogle Scholar
Laing, R. D. (1985). Wisdom, Madness and Folly The Making of a Psychiatrist. Macmillan: London.Google Scholar
Lantos, P. L. (1988). The neuropathology of schizophrenia: a critical review of recent work. In Schizophrenia: The Major Issues (ed. McGuffin, P. and Bebbington, P.), pp. 7389. Mental Health Foundation: London.Google Scholar
Lewis, S. W. & Murray, R. M. (1987). Obstetric complications neurodevelopmental deviance and risk of schizophrenia. Journal of Psychiatric Research 21, 413421.Google Scholar
Mednick, S. A. (1970). Breakdown in individuals at high risk for schizophrenia: possible predispositional perinatal factors Journal of Mental Hygiene 54, 5063.Google Scholar
Meldrum, B. S. (1981). Metabolic effects of prolonged epileptic seizures and the causation of epileptic brain damage. In Metabolic Disorder of the Nervous System (ed. Rose, F. C.), pp. 175187. Pitman Medical: London.Google Scholar
Meldrum, B. S. & Kerwin, R. W. (1988) Glutamate receptors and schizophrenia. Journal of Psychopharmacology 1, 217221.Google Scholar
Meltzer, H. Y. (1987). Biological studies in schizophrenia. Schizophrenia Bulletin 13, 7791.Google Scholar
Monaghan, D. T., Holets, V. R., Troy, D. W. & Colman, C. W. (1983). Anatomical distribution of four pharmacologically distinct 3H-L-glutamate binding sites. Nature 306, 176179.Google Scholar
Montgomery, S. & Green, M. C. D. (1988). The use of cholecystokinin in schizophrenia: a review. Psychological Medicine 18, 593603.Google Scholar
Nemeroff, C. B., Youngblood, W. W., Manberg, P. J., Prange, A. & Kizer, J. S. (1983). Regional brain concentrations of neuropeptides in Huntingdon's chorea and schizophrenia. Science 221, 972975.Google Scholar
Nishikawa, T., Takashima, M. & Toru, M. (1983). Increased 3H-kainate acid binding in the prefrontal cortex in schizophrenia. Neuroscience Letters 40, 245250.Google Scholar
Otterson, O. P. & Storm-Mathisen, J. (1984). Neurons containing or accumulating transmitter ammo acids. In Handbook of Chemical Neuroanatomy, Vol. 3, (ed. Bjorklund, A.Hökfelt, T. and Kuhar, M J.), pp. 141224. Elsevier: Amsterdam.Google Scholar
Patel, S., Meldrum, B. S. & Collins, J. F. (1986). Distribution of 3H-kainic acid binding sites in the rat brain. In vivo and in vitro receptor autoradiography. Neuroscience Letters 70, 301–207.Google Scholar
Pycock, C. J., Kerwin, R. W. & Carter, C. J. (1980). Effects of lesions of cortical dopamine terminals on subcortical dopamine in rats. Nature 286, 7477.Google Scholar
Rakic, P. & Nowakowski, R. S. (1981). The time of origin of neurons in the hippocampal region of the rhesus monkey. Journal of Comparative Neurology 196, 99128.Google Scholar
Reynolds, G. P. (1983). Increased concentrations and lateral asymmetry of amygdalar dopamine in schizophrenia. Nature 305, 527529.Google Scholar
Reynolds, G. P. (1988). The post-mortem neurochemistry of schizophrenia. Psychological Medicine 18, 793797.Google Scholar
Roberts, G. W., Colter, N., Lofthouse, R., Johnstone, E. C. & Crow, T. J. (1987). Is there gliosis in schizophrenia? Investigation in the temporal lobe Biological Psychiatry 22, 14591468.Google Scholar
Scatton, B., Simon, H., LeMoal, M. & Bischoff, S. (1980). Origin of dopaminergic innervation of the rat hippocampal formation. Neuroscience Letters 18, 125131.Google Scholar
Scheibel, A. & Kovelman, J. A. (1981). Disorientation of the hippocampal pyramidal cell and its processes in schizophrenic patients. Biological Psychiatry 16, 101102.Google Scholar
Schwarz, R., Foster, A. C., French, E. D., Whetsell, W. O. & Kohler, C. (1984). Excitotoxic models for neurodegenerative disorders. Life Science 35, 1932Google Scholar
Schitz, D & Winkelmann, E. (1981). Über morphologische Befunde in der orbitofrontalen Rinde bei Menschen mit schizophrenen Psychosen. Eine golgi und elektronenoptische Studie. Psychiatrie, Neurologie und Medizinische Psychologie 33, 19.Google Scholar
Stevens, J. R. (1988). Epilepsy, psychosis and schizophrenia. Schizophrenia Research 1, 7989.Google Scholar
Stevens, J. R. (1982). Neuropathology of schizophrenia. Archives of General Psychiatry 39, 11311139.Google Scholar
Swanson, L. W. (1982). The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Research Bulletin 9, 321353.Google Scholar
Tatetsu, S. (1964). A contribution to the morphological background of schizophrenia with special reference to the finding in the telencephalon. Acta Neuropathologica 3, 558571.Google Scholar
Vanderhaegen, J. J (1984). Neuronal cholecystokinin. In Handbook of Chemical Neuroanatomy, Vol. 4, (ed. Björklund, A. and Hökfelt, T.), pp. 406435. Elsevier: Amsterdam.Google Scholar
Vogt, C. & Vogt, O. (1952). Alterations anatomiques de la schizophrénie el d'autres psychoses dites foncitionelles. In the proceedings of the First International Congress of Neuropathology. Journal of Neuropathology and Experimental Neurology 11, 211213.Google Scholar
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry 44, 660669.Google Scholar
Weinberger, J. & Cohen, G. (1982). Differential effect of ischemia on active uptake of dopamine, GABA and glutamate Journal of Cerebral Blood Flow and Metabolism 2, 265.Google Scholar
Weinberger, D., Berman, K. F. & Zee, R. F. (1986). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. I. Regional cerebral blood flow evidence. Archives of General Psychiatry 43, 114124.Google Scholar
Weinberger, D., Berman, K F & Illowsky, B. P. (1988). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. Archives of General Psychiatry 45, 609615.Google Scholar