Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-17T08:24:59.477Z Has data issue: true hasContentIssue false

Genetic architecture and socio-environmental risk factors for major depressive disorder in Nepal

Published online by Cambridge University Press:  16 September 2024

Karmel W. Choi*
Affiliation:
Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA Stanley Center for Psychiatric Research, Broad Institute, Boston, MA, USA
Justin D. Tubbs*
Affiliation:
Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA Stanley Center for Psychiatric Research, Broad Institute, Boston, MA, USA
Younga H. Lee
Affiliation:
Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA Stanley Center for Psychiatric Research, Broad Institute, Boston, MA, USA
Yixuan He
Affiliation:
Stanley Center for Psychiatric Research, Broad Institute, Boston, MA, USA Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
Kristin Tsuo
Affiliation:
Stanley Center for Psychiatric Research, Broad Institute, Boston, MA, USA Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
Mary T. Yohannes
Affiliation:
Stanley Center for Psychiatric Research, Broad Institute, Boston, MA, USA Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
Lethukuthula L. Nkambule
Affiliation:
Stanley Center for Psychiatric Research, Broad Institute, Boston, MA, USA Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
Emily Madsen
Affiliation:
Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
Dirgha J. Ghimire
Affiliation:
Population Studies Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
Sabrina Hermosilla
Affiliation:
Population Studies Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA Department of Population and Family Health, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
Tian Ge
Affiliation:
Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA Stanley Center for Psychiatric Research, Broad Institute, Boston, MA, USA
Alicia R. Martin
Affiliation:
Stanley Center for Psychiatric Research, Broad Institute, Boston, MA, USA Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
William G. Axinn
Affiliation:
Population Studies Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
Jordan W. Smoller*
Affiliation:
Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA Stanley Center for Psychiatric Research, Broad Institute, Boston, MA, USA
*
Corresponding author: Karmel W. Choi; Email: kwchoi@mgh.harvard.edu; Justin D. Tubbs; Email: jtubbs@mgh.harvard.edu; Jordan W. Smoller; Email: jsmoller@mgh.harvard.edu
Corresponding author: Karmel W. Choi; Email: kwchoi@mgh.harvard.edu; Justin D. Tubbs; Email: jtubbs@mgh.harvard.edu; Jordan W. Smoller; Email: jsmoller@mgh.harvard.edu
Corresponding author: Karmel W. Choi; Email: kwchoi@mgh.harvard.edu; Justin D. Tubbs; Email: jtubbs@mgh.harvard.edu; Jordan W. Smoller; Email: jsmoller@mgh.harvard.edu

Abstract

Background

Major depressive disorder (MDD) is the leading cause of disability globally, with moderate heritability and well-established socio-environmental risk factors. Genetic studies have been mostly restricted to European settings, with polygenic scores (PGS) demonstrating low portability across diverse global populations.

Methods

This study examines genetic architecture, polygenic prediction, and socio-environmental correlates of MDD in a family-based sample of 10 032 individuals from Nepal with array genotyping data. We used genome-based restricted maximum likelihood to estimate heritability, applied S-LDXR to estimate the cross-ancestry genetic correlation between Nepalese and European samples, and modeled PGS trained on a GWAS meta-analysis of European and East Asian ancestry samples.

Results

We estimated the narrow-sense heritability of lifetime MDD in Nepal to be 0.26 (95% CI 0.18–0.34, p = 8.5 × 10−6). Our analysis was underpowered to estimate the cross-ancestry genetic correlation (rg = 0.26, 95% CI −0.29 to 0.81). MDD risk was associated with higher age (beta = 0.071, 95% CI 0.06–0.08), female sex (beta = 0.160, 95% CI 0.15–0.17), and childhood exposure to potentially traumatic events (beta = 0.050, 95% CI 0.03–0.07), while neither the depression PGS (beta = 0.004, 95% CI −0.004 to 0.01) or its interaction with childhood trauma (beta = 0.007, 95% CI −0.01 to 0.03) were strongly associated with MDD.

Conclusions

Estimates of lifetime MDD heritability in this Nepalese sample were similar to previous European ancestry samples, but PGS trained on European data did not predict MDD in this sample. This may be due to differences in ancestry-linked causal variants, differences in depression phenotyping between the training and target data, or setting-specific environmental factors that modulate genetic effects. Additional research among under-represented global populations will ensure equitable translation of genomic findings.

Type
Original Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors share joint first-authorship.

References

Amare, A. T., Schubert, K. O., Hou, L., Clark, S. R., Papiol, S., Cearns, M., … Baune, B. T. (2021). Association of polygenic score for major depression with response to lithium in patients with bipolar disorder. Molecular Psychiatry, 26(6), 24572470. https://doi.org/10.1038/s41380-020-0689-5Google Scholar
Arciero, E., Kraaijenbrink, T., Asan, , Haber, M., Mezzavilla, M., Ayub, Q., … Tyler-Smith, C. (2018). Demographic history and genetic adaptation in the Himalayan region inferred from genome-wide SNP genotypes of 49 populations. Molecular Biology and Evolution, 35(8), 19161933. https://doi.org/10.1093/molbev/msy094Google Scholar
Avinun, R., Nevo, A., Radtke, S. R., Brigidi, B. D., & Hariri, A. R. (2020). Divergence of an association between depressive symptoms and a dopamine polygenic score in Caucasians and Asians. European Archives of Psychiatry and Clinical Neuroscience, 270(2), 229235. https://doi.org/10.1007/s00406-019-01040-xGoogle Scholar
Axinn, W. G., & Pearce, L. D. (2006). Mixed method data collection strategies. New York, NY: Cambridge University Press.Google Scholar
Axinn, W. G., Ghimire, D. J., & Williams, N. E. (2012). Collecting survey data during armed conflict. Journal of Official Statistics, 28(2), 153171.Google Scholar
Axinn, W. G., Chardoul, S., Gatny, H., Ghimire, D. J., Smoller, J. W., Zhang, Y., & Scott, K. M. (2020). Using life history calendars to improve measurement of lifetime experience with mental disorders. Psychological Medicine, 50(3), 515522. Cambridge Core. https://doi.org/10.1017/S0033291719000394Google Scholar
Axinn, W. G., Choi, K. W., Ghimire, D. J., Cole, F., Hermosilla, S., Benjet, C., … Smoller, J. W. (2022). Community-level social support infrastructure and adult onset of major depressive disorder in a South Asian postconflict setting. JAMA Psychiatry, 79(3), 243249. https://doi.org/10.1001/jamapsychiatry.2021.4052Google Scholar
Barry, C.-J. S., Walker, V. M., Cheesman, R., Davey Smith, G., Morris, T. T., & Davies, N. M. (2023). How to estimate heritability: A guide for genetic epidemiologists. International Journal of Epidemiology, 52(2), 624632. https://doi.org/10.1093/ije/dyac224Google Scholar
Benjet, C., Axinn, W. G., Hermosilla, S., Schulz, P., Cole, F., Sampson, L., & Ghimire, D. (2020). Exposure to armed conflict in childhood vs older ages and subsequent onset of major depressive disorder. JAMA Network Open, 3(11), e2019848e2019848. https://doi.org/10.1001/jamanetworkopen.2020.19848Google Scholar
Bigdeli, T. B., Ripke, S., Peterson, R. E., Trzaskowski, M., Bacanu, S.-A., Abdellaoui, A., … Kendler, K. S. (2017). Genetic effects influencing risk for major depressive disorder in China and Europe. Translational Psychiatry, 7(3), e1074. https://doi.org/10.1038/tp.2016.292Google Scholar
Bigdeli, T. B., Voloudakis, G., Barr, P. B., Gorman, B. R., Genovese, G., Peterson, R. E., … Cooperative Studies Program (CSP) #572 and Million Veteran Program (MVP). (2022). Penetrance and pleiotropy of polygenic risk scores for schizophrenia, bipolar disorder, and depression among adults in the US Veterans Affairs health care system. JAMA Psychiatry, 79(11), 10921101. https://doi.org/10.1001/jamapsychiatry.2022.2742Google Scholar
Cai, N., Revez, J. A., Adams, M. J., Andlauer, T. F. M., Breen, G., Byrne, E. M., … Flint, J. (2020). Minimal phenotyping yields genome-wide association signals of low specificity for major depression. Nature Genetics, 52(4), 437447. https://doi.org/10.1038/s41588-020-0594-5Google Scholar
Coombes, B. J., Landi, I., Choi, K. W., Singh, K., Fennessy, B., Jenkins, G. D., … Biernacka, J. M. (2023). The genetic contribution to the comorbidity of depression and anxiety: A multi-site electronic health records study of almost 178 000 people. Psychological Medicine, 53(15), 73687374. https://doi.org/10.1017/S0033291723000983Google Scholar
Evans, L. M., Tahmasbi, R., Vrieze, S. I., Abecasis, G. R., Das, S., Gazal, S., … Keller, M. C. (2018). Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nature Genetics, 50(5), 737745. https://doi.org/10.1038/s41588-018-0108-xGoogle Scholar
Fang, Y., Scott, L., Song, P., Burmeister, M., & Sen, S. (2020). Genomic prediction of depression risk and resilience under stress. Nature Human Behaviour, 4(1), 111118. https://doi.org/10.1038/s41562-019-0759-3Google Scholar
Fernandez-Pujals, A. M., Adams, M. J., Thomson, P., McKechanie, A. G., Blackwood, D. H. R., Smith, B. H., … McIntosh, A. M. (2015). Epidemiology and heritability of major depressive disorder, stratified by age of onset, sex, and illness course in Generation Scotland: Scottish Family Health Study (GS:SFHS). PLoS ONE, 10(11), e0142197. https://doi.org/10.1371/journal.pone.0142197Google Scholar
Ge, T., Chen, C.-Y., Ni, Y., Feng, Y.-C. A., & Smoller, J. W. (2019). Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nature Communications, 10(1), 1776. https://doi.org/10.1038/s41467-019-09718-5Google Scholar
Ghimire, D. J., Chardoul, S., Kessler, R. C., Axinn, W. G., & Adhikari, B. P. (2013). Modifying and validating the Composite International Diagnostic Interview (CIDI) for use in Nepal. International Journal of Methods in Psychiatric Research, 22(1), 7181. (23494758). https://doi.org/10.1002/mpr.1375Google Scholar
Giannakopoulou, O., Lin, K., Meng, X., Su, M.-H., Kuo, P.-H., Peterson, R. E., … 23andMe Research Team, China Kadoorie Biobank Collaborative Group, and Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. (2021). The genetic architecture of depression in individuals of east Asian ancestry: A genome-wide association study. JAMA Psychiatry, 78(11), 12581269. https://doi.org/10.1001/jamapsychiatry.2021.2099Google Scholar
Global Burden of Disease Collaborative Network. (2020). Global Burden of Disease Study 2019 (GBD 2019) Results. Retrieved August 25, 2022, from Institute for Health Metrics and Evaluation website. https://vizhub.healthdata.org/gbd-results/. Accessed August 25, 2022.Google Scholar
Halldorsdottir, T., Piechaczek, C., Soares de Matos, A. P., Czamara, D., Pehl, V., Wagenbuechler, P., … Binder, E. B. (2019). Polygenic risk: Predicting depression outcomes in clinical and epidemiological cohorts of youths. American Journal of Psychiatry, 176(8), 615625. https://doi.org/10.1176/appi.ajp.2019.18091014Google Scholar
Hermosilla, S., Choi, K. W., Askari, M. S., Marks, T., Denckla, C., Axinn, W., … Benjet, C. (2022). What can we learn about polytrauma typologies by comparing population-representative to trauma-exposed samples: A Nepali example. Journal of Affective Disorders, 314, 201210. https://doi.org/10.1016/j.jad.2022.07.006Google Scholar
Howard, D. M., Adams, M. J., Shirali, M., Clarke, T.-K., Marioni, R. E., Davies, G., … McIntosh, A. M. (2018). Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. Nature Communications, 9(1), 1470. https://doi.org/10.1038/s41467-018-03819-3Google Scholar
Howard, D. M., Adams, M. J., Clarke, T.-K., Hafferty, J. D., Gibson, J., Shirali, M., … McIntosh, A. M. (2019). Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nature Neuroscience, 22(3), 343352. https://doi.org/10.1038/s41593-018-0326-7Google Scholar
Jiang, L., Zheng, Z., Fang, H., & Yang, J. (2021). A generalized linear mixed model association tool for biobank-scale data. Nature Genetics, 53, 16161621. https://doi.org/doi.org/10.1038/s41588-021-00954-4Google Scholar
Kachuri, L., Chatterjee, N., Hirbo, J., Schaid, D. J., Martin, I., Kullo, I. J., … Ge, T. (2023). Principles and methods for transferring polygenic risk scores across global populations. Nature Reviews Genetics, 25(1), 825. https://doi.org/10.1038/s41576-023-00637-2Google Scholar
Kendall, K. M., Assche, E. V., Andlauer, T. F. M., Choi, K. W., Luykx, J. J., Schulte, E. C., & Lu, Y. (2021). The genetic basis of major depression. Psychological Medicine, 51(13), 22172230. https://doi.org/10.1017/S0033291721000441Google Scholar
Kendler, K. S., Gardner, C. O., Neale, M. C., & Prescott, C. A. (2001). Genetic risk factors for major depression in men and women: Similar or different heritabilities and same or partly distinct genes? Psychological Medicine, 31(4), 605616. https://doi.org/10.1017/S0033291701003907Google Scholar
Kendler, K. S., Gatz, M., Gardner, C. O., & Pedersen, N. L. (2006). A Swedish national twin study of lifetime major depression. American Journal of Psychiatry, 163(1), 109114. https://doi.org/10.1176/appi.ajp.163.1.109Google Scholar
Kessler, R. C., & Üstün, T. B. (2004). The World Mental Health (WMH) survey initiative version of the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI). International Journal of Methods in Psychiatric Research, 13(2), 93121. https://doi.org/10.1002/mpr.168Google Scholar
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Koretz, D., Merikangas, K. R., … Wang, P. S. (2003). The epidemiology of major depressive disorder: Results from the national comorbidity survey replication (NCS-R). JAMA, 289(23), 30953105. https://doi.org/10.1001/jama.289.23.3095Google Scholar
Koenig, Z., Yohannes, M. T., Nkambule, L. L., Goodrich, J. K., Kim, H. A., Zhao, X., … Martin, A. R. (2023). A harmonized public resource of deeply sequenced diverse human genomes. BioRxiv: The Preprint Server for Biology, 01.23.525248. https://doi.org/10.1101/2023.01.23.525248Google Scholar
Köhler, C. A., Evangelou, E., Stubbs, B., Solmi, M., Veronese, N., Belbasis, L., … Carvalho, A. F. (2018). Mapping risk factors for depression across the lifespan: An umbrella review of evidence from meta-analyses and Mendelian randomization studies. Journal of Psychiatric Research, 103, 189207. https://doi.org/10.1016/j.jpsychires.2018.05.020Google Scholar
Lee, S. H., Wray, N. R., Goddard, M. E., & Visscher, P. M. (2011). Estimating missing heritability for disease from genome-wide association studies. American Journal of Human Genetics, 88(3), 294305. https://doi.org/10.1016/j.ajhg.2011.02.002Google Scholar
Lee, S. H., Goddard, M. E., Wray, N. R., & Visscher, P. M. (2012). A better coefficient of determination for genetic profile analysis. Genetic Epidemiology, 36(3), 214224. https://doi.org/10.1002/gepi.21614Google Scholar
Martin, A. R., Kanai, M., Kamatani, Y., Okada, Y., Neale, B. M., & Daly, M. J. (2019). Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genetics, 51(4), 584591. https://doi.org/10.1038/s41588-019-0379-xGoogle Scholar
McKay, M. T., Kilmartin, L., Meagher, A., Cannon, M., Healy, C., & Clarke, M. C. (2022). A revised and extended systematic review and meta-analysis of the relationship between childhood adversity and adult psychiatric disorder. Journal of Psychiatric Research, 156, 268283. https://doi.org/10.1016/j.jpsychires.2022.10.015Google Scholar
Pearson-Fuhrhop, K. M., Dunn, E. C., Mortero, S., Devan, W. J., Falcone, G. J., Lee, P., … Cramer, S. C. (2014). Dopamine genetic risk score predicts depressive symptoms in healthy adults and adults with depression. PLoS One, 9(5), e93772. (24834916). https://doi.org/10.1371/journal.pone.0093772Google Scholar
Periyasamy, S., John, S., Padmavati, R., Rajendren, P., Thirunavukkarasu, P., Gratten, J., … Mowry, B. J. (2019). Association of schizophrenia risk with disordered niacin metabolism in an Indian genome-wide association study. JAMA Psychiatry, 76(10), 10261034. https://doi.org/10.1001/jamapsychiatry.2019.1335Google Scholar
Peterson, R. E., Kuchenbaecker, K., Walters, R. K., Chen, C.-Y., Popejoy, A. B., Periyasamy, S., … Duncan, L. E. (2019). Genome-wide association studies in ancestrally diverse populations: Opportunities, methods, pitfalls, and recommendations. Cell, 179(3), 589603. https://doi.org/10.1016/j.cell.2019.08.051Google Scholar
Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nature Genetics, 47(7), 702709. https://doi.org/10.1038/ng.3285Google Scholar
Scott, K. M., Zhang, Y., Chardoul, S., Ghimire, D. J., Smoller, J. W., & Axinn, W. G. (2021). Resilience to mental disorders in a low-income, non-Westernized setting. Psychological Medicine, 51(16), 28252834. https://doi.org/10.1017/S0033291720001464Google Scholar
Shen, H., Gelaye, B., Huang, H., Rondon, M. B., Sanchez, S., & Duncan, L. E. (2020). Polygenic prediction and GWAS of depression, PTSD, and suicidal ideation/self-harm in a Peruvian cohort. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 45(10), 15951602. https://doi.org/10.1038/s41386-020-0603-5Google Scholar
Shi, H., Gazal, S., Kanai, M., Koch, E. M., Schoech, A. P., Siewert, K. M., … Price, A. L. (2021). Population-specific causal disease effect sizes in functionally important regions impacted by selection. Nature Communications, 12, 1098. https://doi.org/10.1038/s41467-021-21286-1Google Scholar
Thornton, A., Ghimire, D. J., & Mitchell, C. (2012). The measurement and prevalence of an ideational model of family and economic development in Nepal. Population Studies, 66(3), 329345.Google Scholar
Truong, B., Hull, L. E., Ruan, Y., Huang, Q. Q., Hornsby, W., Martin, H., … Natarajan, P. (2024). Integrative polygenic risk score improves the prediction accuracy of complex traits and diseases. Cell Genomics, 4(4), 100523. https://doi.org/10.1016/j.xgen.2024.100523Google Scholar
Tubbs, J. D., & Sham, P. C. (2023). Preliminary evidence for genetic nurture in depression and neuroticism through polygenic scores. JAMA Psychiatry, 80(8), 832841. https://doi.org/10.1001/jamapsychiatry.2023.1544Google Scholar
Wang, Y., Tsuo, K., Kanai, M., Neale, B. M., & Martin, A. R. (2022). Challenges and opportunities for developing more generalizable polygenic risk scores. Annual Review of Biomedical Data Science, 5, 293320. https://doi.org/10.1146/annurev-biodatasci-111721-074830Google Scholar
Willer, C. J., Li, Y., & Abecasis, G. R. (2010). METAL: Fast and efficient meta-analysis of genomewide association scans. Bioinformatics (Oxford, England), 26(17), 21902191. https://doi.org/10.1093/bioinformatics/btq340Google Scholar
Wray, N. R., Lin, T., Austin, J., McGrath, J. J., Hickie, I. B., Murray, G. K., & Visscher, P. M. (2021). From basic science to clinical application of polygenic risk scores: A primer. JAMA Psychiatry, 78(1), 101109. https://doi.org/10.1001/jamapsychiatry.2020.3049Google Scholar
Xing, J., Watkins, W. S., Shlien, A., Walker, E., Huff, C. D., Witherspoon, D. J., … Jorde, L. B. (2010). Toward a more uniform sampling of human genetic diversity: A survey of worldwide populations by high-density genotyping. Genomics, 96(4), 199210. https://doi.org/10.1016/j.ygeno.2010.07.004Google Scholar
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A tool for genome-wide complex trait analysis. American Journal of Human Genetics, 88(1), 7682. https://doi.org/10.1016/j.ajhg.2010.11.011Google Scholar
Zaitlen, N., Kraft, P., Patterson, N., Pasaniuc, B., Bhatia, G., Pollack, S., & Price, A. L. (2013). Using extended genealogy to estimate components of heritability for 23 quantitative and dichotomous traits. PLOS Genetics, 9(5), e1003520. https://doi.org/10.1371/journal.pgen.1003520Google Scholar
Supplementary material: File

Choi et al. supplementary material

Choi et al. supplementary material
Download Choi et al. supplementary material(File)
File 9.8 KB