Skip to main content Accessibility help

A functional MRI study of verbal fluency in adults with bipolar disorder and their unaffected relatives

  • M. P. G. Allin (a1), N. Marshall (a1), K. Schulze (a1), M. Walshe (a1), M.-H. Hall (a2), M. Picchioni (a1), R. M. Murray (a1) and C. McDonald (a3)...



Individuals with a history of bipolar disorder demonstrate abnormalities of executive function, even during euthymia. The neural architecture underlying this and its relationship with genetic susceptibility for illness remain unclear.


We assessed 18 remitted individuals with bipolar disorder, 19 of their unaffected first degree relatives and 19 healthy controls using functional magnetic resonance imaging (fMRI) and a paced verbal fluency task with two levels of difficulty.


Bipolar patients made significantly more errors in the easy level of the verbal fluency task than their relatives or controls. Analysis of variance of fMRI data demonstrated a significant main effect of group in a large cluster including retrosplenial cortex and adjacent precuneate cortex (x=7, y=−56, x=15). All three groups showed deactivation in these areas during task performance relative to a neutral or rest condition. Group differences comprised a lesser amount of deactivation in unaffected relatives compared with controls in the easy condition [F(2, 55)=3.42, p=0.04] and in unaffected relatives compared with bipolar patients in the hard condition [F(2, 55)=4.34, p=0.018]. Comparison with the control group indicated that both bipolar patients and their relatives showed similar deficits of deactivation in retrosplenial cortex and reduced activation of left prefrontal cortex.


Bipolar disorder may be associated with an inherited abnormality of a neural network incorporating left prefrontal cortex and bilateral retrosplenial cortex.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A functional MRI study of verbal fluency in adults with bipolar disorder and their unaffected relatives
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A functional MRI study of verbal fluency in adults with bipolar disorder and their unaffected relatives
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A functional MRI study of verbal fluency in adults with bipolar disorder and their unaffected relatives
      Available formats


Corresponding author

*Address for correspondence: Dr M. P. G. Allin, Box 63, Institute of Psychiatry, De Crespigny Park, London SE5 8AF, UK. (Email:


Hide All
Altman, EG, Hedeker, D, Peterson, JL, Davis, JM (1997). The Altman Self-Rating Mania Scale. Biological Psychiatry 42, 948955.
Amunts, K, Weiss, PH, Mohlberg, H, Pieperhoff, P, Eickhoff, S, Gurd, JM, Marshall, JC, Shah, NJ, Fink, GR, Zilles, K (2004). Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space – the roles of Brodmann areas 44 and 45. NeuroImage 22, 4256.
Andreasen, NC, O‘Leary, DS, Flaum, M, Nopoulos, P, Watkins, GL, Boles Ponto, LL, Hichwa, RD (1997). Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naïve patients. Lancet 349, 17301734.
Arts, B, Jabben, N, Krabbendam, L, van Os, J (2008). Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychological Medicine 38, 771785.
Balanza-Martınez, V, Rubio, C, Selva-Vera, G, Anabel Martinez-Aran, A, Sánchez-Moreno, J, Salazar-Fraile, J, Eduard Vieta, E, Tabares-Seisdedos, R (2008). Neurocognitive endophenotypes (Endophenocognitypes) from studies of relatives of bipolar disorder subjects: A systematic review. Neuroscience and Biobehavioral Reviews 32, 14261438.
Beck, AT, Ward, CH, Mendelson, M, Mock, J, Erbaugh, J (1961). An inventory for measuring depression. Archives of General Psychiatry 4, 561571.
Blumberg, HP, Stern, E, Martinez, D, Ricketts, S, de Asis, J, White, T, Epstein, J, McBride, PA, Eidelberg, D, Kocsis, JH, Silbersweig, DA (2000). Increased anterior cingulate and caudate activity in bipolar mania. Biological Psychiatry 48, 10451052.
Bora, E, Vahip, S, Akdeniz, F, İlerisoy, H, Aldemir, E, Alkan, M (2008). Executive and verbal working memory dysfunction in first-degree relatives of patients with bipolar disorder. Psychiatry Research 161, 318324.
Bora, E, Yucel, M, Pantelis, C (2009). Cognitive endophenotypes of bipolar disorder: a meta-analysis of neuropsychological deficits in euthymic patients and their first-degree relatives. Journal of Affective Disorders 113, 120.
Brammer, MJ, Bullmore, ET, Simmons, A, Williams, SC, Grasby, PM, Howard, RJ, woodruff, PW, Rabe-Hesketh, S (1997). Generic brain activation mapping in functional magnetic resonance imaging, a nonparametric approach. Magnetic Resonance Imaging 15, 763770.
Bullmore, ET, Long, C, Suckling, J, Fadili, J, Calvert, GA, Zelaya, F, Carpenter, TA, Brammer, MJ (2001). Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains. Human Brain Mapping 12, 6178.
Bullmore, ET, Suckling, J, Overmeyer, S, Rabe-Hesketh, S, Taylor, E, Brammer, MJ (1999). Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Transactions on Medical Imaging 18, 3242.
Caligiuri, MP, Brown, GG, Meloy, MJ, Eberson, SC, Kindermann, SS, Frank, LR, Zorrilla, LE, Lohr, JB (2003). An fMRI study of affective state and medication on cortical and subcortical brain regions during motor performance in bipolar disorder. Psychiatry Research 123, 171182.
Carlson, P, Singh, J, Zarate, C Jr., Drevets, W, Manji, H (2006). Neural circuitry and neuroplasticity in mood disorders: Insights for novel therapeutic targets. NeuroRX 3, 2241.
Cavanagh, JTO, Van Beck, M, Muir, W, Blackwood, DHR (2001). Case-control study of neurocognitive function in euthymic patients with bipolar disorder, an association with mania. British Journal of Psychiatry 180, 320326.
Chaddock, CA, Barker, GJ, Marshall, N, Schulze, K, Hall, MH, Fern, A, Walshe, M, Bramon, E, Chitnis, XA, Murray, RM, McDonald, C (2009). White matter tract microstructure in patients with familial bipolar I disorder and their unaffected relatives, a diffusion tensor imaging study. British Journal of Psychiatry 194, 527534.
Curtis, VA, Dixon, TA, Morris, RG, Bullmore, ET, Brammer, MJ, Williams, SC, Sharma, T, Murray, RM, McGuire, PK (2001). Differential frontal activation in schizophrenia and bipolar illness during verbal fluency. Journal of Affective Disorders 66, 111121.
Curtis, VA, Thompson, JM, Seal, ML, Monks, PJ, Lloyd, AJ, Harrison, L, Brammer, MJ, Williams, SCR, Murray, RM, Young, AH, Ferrier, IN (2007). The nature of abnormal language processing in euthymic bipolar I disorder: evidence for a relationship between task demand and prefrontal function. Bipolar Disorders 9, 358369.
Drapier, D, Surguladze, S, Marshall, N, Schulze, K, Fern, A, Hall, M-H, Walshe, M, Murray, RM, McDonald, C (2008). Genetic liability for bipolar disorder is characterised by excess frontal activation in response to a working memory task. Biological Psychiatry 64, 513520.
Endicott, J, Spitzer, RL (1978). A diagnostic interview, the schedule for affective disorders and schizophrenia. Archives of General Psychiatry 35, 837844.
Fair, DA, Cohen, AL, Dosenbach, NUF, Church, JA, Miezin, FM, Barch, DM (2008). The maturing architecture of the brain's default network. Proceedings of the National Academy of Sciences 105, 40284032.
Fletcher, PC, Frith, CD, Baker, SC, Shallice, T, Frackowiak, RSJ, Dolan, RJ (1995). The minds eye-activation of the precuneus in memory related imagery. Neuroimage 2, 196200.
Friedman, JNW, Hurley, RA, Taber, KH (2006). Bipolar disorder, imaging state versus trait. Journal of Neuropsychiatry and Clinical Neuroscience 18, 296301.
Fu, CHY, Morgan, K, Suckling, J, Williams, SCR, Andrew, C, Vythelingum, GN, McGuire, PK (2002). A functional magnetic resonance imaging study of overt letter verbal fluency using a clustered acquisition sequence, Greater anterior cingulate activation with increased task demand. NeuroImage 17, 871879.
Fu, CHY, Suckling, J, Williams, SCR, Andrew, CM, Vythelingum, GN, McGuire, PK (2005). Effects of psychotic state and task demand on prefrontal function in schizophrenia: an fMRI study of overt verbal fluency. American Journal of Psychiatry 162, 485494.
Ho, AP, Gillin, JC, Buchsbaum, MS, Wu, JC, Abel, L, Bunney, WE Jr. (1996). Brain glucose metabolism during non-rapid eye movement sleep in major depression. A positron emission tomography study. Archives of General Psychiatry 53, 645652.
Hoffman, RE, Stopek, S, Andreasen, NC (1986). A comparative study of manic vs schizophrenic speech disorganization. Archives of General Psychiatry 43, 831838.
Kendler, KS (2003). The genetics of schizophrenia, Chromosomal deletions, attentional disturbances, and spectrum boundaries. American Journal of Psychiatry 160, 15491553.
McDonald, C, Marshall, N, Sham, PC, Bullmore, ET, Schulze, K, Chapple, B, Bramon, E, Filbey, F, Quraishi, S, Walshe, M, Murray, RM (2006). Regional brain morphometry in patients with schizophrenia or bipolar disorder and their unaffected relatives. American Journal of Psychiatry 163, 478487.
McIntosh, AM, Heather, WC, McKirdy, J, Hall, J, Sussmann, JED, Shankar, P, Johnstone, EC, Lawrie, SM (2008). Prefrontal function and activation in bipolar disorder and schizophrenia. American Journal of Psychiatry 165, 378384.
Maddock, RJ (2000). The retrosplenial cortex and emotion, new insights from functional neuroimaging of the human brain. Trends in Neurosciences 22, 310316.
Maddock, RJ, Garrett, AS, Buonocore, MH (2003). Posterior cingulate cortex activation by emotional words, fMRI evidence from a valence decision task. Human Brain Mapping 18, 3041.
Martínez-Arán, A, Vieta, E, Reinares, M, Colom, F, Torrent, C, Sánchez-Moreno, J, Benabarre, A, Goikolea, JM, Comes, M, Salamero, M (2004). Cognitive function across manic or hypomanic, depressed, and euthymic states in bipolar disorder. American Journal of Psychiatry 161, 262270.
Mesulam, M-M (2000). Behavioral neuroanatomy, large-scale networks, association cortex, frontal syndromes, the limbic system, and hemispheric specializations. In Principles of Behavioral and Cognitive Neurology (ed. Mesulam, M.-M.), pp. 1120. Oxford University Press: Oxford.
Monks, PJ, Thompson, JM, Bullmore, ET, Suckling, J, Brammer, MJ, Williams, SCR, Simmons, A, Giles, N, Lloyd, AJ, Harrison, CL, Seal, M, Murray, RM, Ferrier, IN, Young, AH, Curtis, VA (2004). A functional MRI study of working memory task in euthymic bipolar disorder, evidence for task-specific dysfunction. Bipolar Disorders 6, 550564.
Murphy, FC, Sahakian, BJ (2001). Neuropsychology of bipolar disorder. British Journal of Psychiatry 178, s120s127.
Nugent, AC, Milham, MP, Bain, EE (2006). Cortical abnormalities in bipolar disorder investigated with MRI and voxel-based morphometry. Neuroimage 30, 485497.
Reed, LJ, Lasserson, D, Marsden, P, Bright, P, Nicola, S, Kopelman, MD (2005). Correlations of regional cerebral metabolism with memory performance and executive function in patients with herpes encephalitis or frontal lobe lesions. Neuropsychology 19, 555565.
Robinson, LJ, Thompson, JM, Gallagher, P, Goswami, U, Young, AH, Ferrier, IN, Moore, PB (2006). A meta-analysis of cognitive deficits in euthymic patients with bipolar disorder. Journal of Affective Disorders 93, 105115.
Sassi, RB, Brambilla, P, Hatch, JP, Nicoletti, MA, Mallinger, AG, Frank, E, Kupfer, DJ, Keshavan, MS, Soares, JC (2004). Reduced left anterior cingulate volumes in untreated bipolar patients. Biological Psychiatry 56, 467475.
Schlösser, R, Hutchinson, M, Joseffer, S, Rusinek, H, Saarimaki, A, Stevenson, J, Dewey, SL, Brodie, JD (1998). Functional magnetic resonance imaging of human brain activity in a verbal fluency task. Journal of Neurology, Neurosurgery and Psychiatry 64, 492498.
Sonuga-Barke, EJS, Castellanos, FX (2007). Spontaneous attentional fluctuations in impaired states and pathological conditions, a neurobiological hypothesis. Neuroscience & Biobehavioral Reviews 31, 977986.
Strakowski, SM, DelBello, MP, Adler, CM (2005). The functional neuroanatomy of bipolar disorder, a review of neuroimaging findings. Molecular Psychiatry 10, 105116.
Strakowski, SM, DelBello, MP, Adler, C, Cecil, KM, Sax, KW (2000). Neuroimaging in bipolar disorder. Bipolar Disorders 2, 148164.
Strauss, E, Sherman, E, Spreen, O (2006). A Compendium of Neuropsychological Tests, Administration, Norms and Commentary, 3rd edn. Oxford University Press: London.
Torrent, C, Martinez-Arán, A, Daban, C, Sanchez-Moreno, J, Comes, M, Goikolea, JM, Salamero, M, Vieta, E (2006). Cognitive impairment in bipolar II disorder. British Journal of Psychiatry 189, 254259.
Yoshimura, H, Sugai, T, Honjo, M, Segami, N, Onoda, N (2005). NMDA receptor-dependent oscillatory signal outputs from the retrosplenial cortex triggered by a non-NMDA receptor-dependent signal input from the visual cortex. Brain Research 1045, 1221.
Zubieta, J-K, Huguelet, P, O'Neil, RN, Giordani, BJ (2001). Cognitive function in euthymic bipolar I disorder. Psychiatry Research 102, 9–20.


A functional MRI study of verbal fluency in adults with bipolar disorder and their unaffected relatives

  • M. P. G. Allin (a1), N. Marshall (a1), K. Schulze (a1), M. Walshe (a1), M.-H. Hall (a2), M. Picchioni (a1), R. M. Murray (a1) and C. McDonald (a3)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed