Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-04-30T12:02:10.279Z Has data issue: false hasContentIssue false

Discrepancy between objective and subjective cognition and its association with the trajectory of symptoms and functioning in depressive patients

Published online by Cambridge University Press:  03 November 2023

Xuequan Zhu
Affiliation:
National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
Ruoxi Ding
Affiliation:
Peking University Sixth Hospital, Peking University Institute of Mental Health, National Health Commission Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China China Center for Health Development Studies, Peking University, Beijing, China
Xu Chen
Affiliation:
National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
Xiaoyi Wang
Affiliation:
Zhejiang BrainAu Medical Technology Co., Ltd, Shaoxing, China
Ping He*
Affiliation:
China Center for Health Development Studies, Peking University, Beijing, China
Gang Wang*
Affiliation:
National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
*
Corresponding authors: Ping He; Email: phe@pku.edu.cn; Gang Wang; Email: gangwangdoc@ccmu.edu.cn
Corresponding authors: Ping He; Email: phe@pku.edu.cn; Gang Wang; Email: gangwangdoc@ccmu.edu.cn

Abstract

Background

Discrepancy between objective and subjective cognitive deficit is common among patients with major depressive disorders (MDDs) and may play a key role in the mechanism linking cognition with recovery of symptom and psychosocial function. This study, therefore, explores the cognitive discrepancy, and its association with the trajectory of symptoms and functioning over a 6-month period.

Methods

We used data from the Prospective Research Observation to Assess Cognition in Treated patients with MDD (PROACT) study, from which 598 patients were included. Cognitive discrepancy scores were computed using a novel methodology, with positive values indicating more subjective than objective deficit (i.e. ‘underestimation’) and negative values indicating more objective than subjective difficulties (i.e. ‘overestimation’). Linear growth curve models were employed to examine the association of the cognitive discrepancy with the trajectory of depressive symptoms, psychosocial function, and quality of life.

Results

About 68% of patients displayed disproportionately more objective than subjective cognitive deficit at baseline, and the mean cognitive discrepancy score was −1.4 (2.7). Overestimation was associated with a faster decrease of HDRS-17 (β = −0.46, p = 0.002) and a faster decrease of psychosocial function in social life (β = −0.13, p = 0.013) and family life (β = −0.12, p = 0.026), and a greater improvement of EQ-5D utility score (β = 0.01, p < 0.001).

Conclusion

We found a lower sensitivity of cognitive deficit at baseline and its decrease was associated with better health outcomes. Our findings have clinical implications of the necessity to assess both subjective and objective cognition for identification and categorization and to incorporate cognitive and psychological therapies for optimized treatment outcomes.

Type
Original Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this study.

References

Ang, Y.-S., Bruder, G. E., Keilp, J. G., Rutherford, A., Alschuler, D. M., Pechtel, P., … Cusin, C. (2022). Exploration of baseline and early changes in neurocognitive characteristics as predictors of treatment response to bupropion, sertraline, and placebo in the EMBARC clinical trial[J]. Psychological Medicine, 52(13), 24412449.CrossRefGoogle ScholarPubMed
Aschwanden, D., Sutin, A. R., Luchetti, M., Ó Súilleabháin, P. S., Stephan, Y., Sesker, A. A., … Terracciano, A. (2022). The bite is worse than the bark: Associations of personality and depressive symptoms with memory discrepancy. Psychology and Aging, 37(5), 575590.CrossRefGoogle Scholar
Bäckman, L., Hill, R. D., & Forsell, Y. (1996). The influence of depressive symptomatology on episodic memory functioning among clinically nondepressed older adults. Journal of Abnormal Psychology, 105(1), 97.CrossRefGoogle ScholarPubMed
Baeza-Velasco, C., Guillaume, S., Olié, E., Alacreu-Crespo, A., Cazals, A., & Courtet, P. (2020). Decision-making in major depressive disorder: Subjective complaint, objective performance, and discrepancy between both. Journal of Affective Disorders, 270, 102107.CrossRefGoogle Scholar
Clark, M., DiBenedetti, D., & Perez, V. (2016). Cognitive dysfunction and work productivity in major depressive disorder. Expert review of Pharmacoeconomics & Outcomes Research, 16(4), 455463.CrossRefGoogle ScholarPubMed
Delbaere, K., Close, J. C., Brodaty, H., Sachdev, P., & Lord, S. R. (2010). Determinants of disparities between perceived and physiological risk of falling among elderly people: Cohort study. BMJ, 341, c4165.CrossRefGoogle ScholarPubMed
Edition, F. (2013). Diagnostic and statistical manual of mental disorders. American Psychiatric Association, 21(21), 591643.Google Scholar
Group, T. E. (1990). EuroQol – A new facility for the measurement of health-related quality of life. Health Policy, 16(3), 199208.Google Scholar
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery, and Psychiatry, 23(1), 56.CrossRefGoogle ScholarPubMed
Haro, J. M., Hammer-Helmich, L., Saragoussi, D., Ettrup, A., & Larsen, K. G. (2019). Patient-reported depression severity and cognitive symptoms as determinants of functioning in patients with major depressive disorder: A secondary analysis of the 2-year prospective PERFORM study. Neuropsychiatric Disease and Treatment, 15, 2313.CrossRefGoogle ScholarPubMed
Jaeger, J. (2018). Digit symbol substitution test: The case for sensitivity over specificity in neuropsychological testing. Journal of Clinical Psychopharmacology, 38(5), 513.CrossRefGoogle ScholarPubMed
Jaeger, J., Berns, S., Uzelac, S., & Davis-Conway, S. (2006). Neurocognitive deficits and disability in major depressive disorder. Psychiatry Research, 145(1), 3948.CrossRefGoogle ScholarPubMed
Kalisch, R., Müller, M. B., & Tüscher, O. (2015). A conceptual framework for the neurobiological study of resilience. Behavioral and Brain Sciences, 38.CrossRefGoogle ScholarPubMed
Lam, R. W., Kennedy, S. H., McIntyre, R. S., & Khullar, A. (2014). Cognitive dysfunction in major depressive disorder: Effects on psychosocial functioning and implications for treatment. The Canadian Journal of Psychiatry, 59(12), 649654.CrossRefGoogle ScholarPubMed
Lee, J.-S., Mathews, A., Shergill, S., & Yiend, J. (2016). Magnitude of negative interpretation bias depends on severity of depression. Behaviour Research and Therapy, 83, 2634.CrossRefGoogle ScholarPubMed
LeMoult, J., & Gotlib, I. H. (2019). Depression: A cognitive perspective. Clinical Psychology Review, 69, 5166.CrossRefGoogle ScholarPubMed
McIntyre, R. S., Cha, D. S., Soczynska, J. K., Woldeyohannes, H. O., Gallaugher, L. A., Kudlow, P., … Baskaran, A. (2013). Cognitive deficits and functional outcomes in major depressive disorder: Determinants, substrates, and treatment interventions. Depression and Anxiety, 30(6), 515527.CrossRefGoogle ScholarPubMed
Miskowiak, K. W., Petersen, J. Z., Ott, C. V., Knorr, U., Kessing, L. V., Gallagher, P., & Robinson, L. (2016). Predictors of the discrepancy between objective and subjective cognition in bipolar disorder: A novel methodology. Acta Psychiatrica Scandinavica, 134(6), 511521.CrossRefGoogle ScholarPubMed
Petersen, J. Z., Porter, R. J., & Miskowiak, K. W. (2019). Clinical characteristics associated with the discrepancy between subjective and objective cognitive impairment in depression. Journal of Affective Disorders, 246, 763774.CrossRefGoogle ScholarPubMed
Reese, C. M., & Cherry, K. E. (2004). Practical memory concerns in adulthood. The International Journal of Aging and Human Development, 59(3), 235253.CrossRefGoogle ScholarPubMed
Rnic, K., Jung, Y.-E., Torres, I., Chakrabarty, T., LeMoult, J., Vaccarino, A. L., … McInerney, S. (2021). Association between discrepancy in objective and subjective cognitive abilities and treatment response in patients with major depressive disorder: A CAN-BIND-1 study report. Journal of Affective Disorders, 295, 10951101.CrossRefGoogle ScholarPubMed
Robinson, L., Hackett, K., Bowman, S., Griffiths, B., Ng, W., & Gallagher, P. (2014). THU0035 Understanding the GAP between subjective symptoms and objective illness markers in primary SjÖGren's syndrome. Annals of the Rheumatic Diseases, 73(Suppl 2), 188189.CrossRefGoogle Scholar
Rock, P. L., Roiser, J., Riedel, W. J., & Blackwell, A. (2014). Cognitive impairment in depression: A systematic review and meta-analysis. Psychological Medicine, 44(10), 20292040.CrossRefGoogle ScholarPubMed
Saragoussi, D., Christensen, M. C., Hammer-Helmich, L., Rive, B., Touya, M., & Haro, J. M. (2018). Long-term follow-up on health-related quality of life in major depressive disorder: A 2-year European cohort study. Neuropsychiatric Disease and Treatment.CrossRefGoogle ScholarPubMed
Schwert, C., Stohrer, M., Aschenbrenner, S., Weisbrod, M., & Schröder, A. (2018). Biased neurocognitive self-perception in depressive and in healthy persons. Journal of Affective Disorders, 232, 96102.CrossRefGoogle ScholarPubMed
Serra-Blasco, M., Torres, I. J., Vicent-Gil, M., Goldberg, X., Navarra-Ventura, G., Aguilar, E., … Palao, D. (2019). Discrepancy between objective and subjective cognition in major depressive disorder. European Neuropsychopharmacology, 29(1), 4656.CrossRefGoogle ScholarPubMed
Sheehan, K. H., & Sheehan, D. V. (2008). Assessing treatment effects in clinical trials with the discan metric of the Sheehan Disability Scale. International Clinical Psychopharmacology, 23(2), 7083.CrossRefGoogle ScholarPubMed
Shi, C., Wang, G., Tian, F., Han, X., Sha, S., Xing, X., & Yu, X. (2017). Reliability and validity of Chinese version of perceived deficits questionnaire for depression in patients with MDD. Psychiatry Research, 252, 319324.CrossRefGoogle ScholarPubMed
Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychological Bulletin, 139(1), 81.CrossRefGoogle ScholarPubMed
Srisurapanont, M., Bautista, D., Chen, C.-H., Wang, G., Udomratn, P., & Eurviriyanukul, K. (2015). Subjective memory and concentration deficits in medication-free, non-elderly Asians with major depressive disorder: Prevalence and their correlates. Journal of Affective Disorders, 171, 105110.CrossRefGoogle ScholarPubMed
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448460.CrossRefGoogle ScholarPubMed
Sumiyoshi, T., Watanabe, K., Noto, S., Sakamoto, S., Moriguchi, Y., Tan, K. H. X., … Fernandez, J. (2019). Relationship of cognitive impairment with depressive symptoms and psychosocial function in patients with major depressive disorder: Cross-sectional analysis of baseline data from PERFORM-J. Journal of Affective Disorders, 258, 172178.CrossRefGoogle ScholarPubMed
Wang, G., Si, T.-M., Li, L., Fang, Y., Wang, C.-X., Wang, L.-N., … Luo, S. (2019). Cognitive symptoms in major depressive disorder: Associations with clinical and functional outcomes in a 6-month, non-interventional, prospective study in China. Neuropsychiatric Disease and Treatment, 15, 1723.CrossRefGoogle Scholar
World Health Organization. (2011). World report on disability 2011. World Health Organization. Geneva, SwitzerlandGoogle Scholar
Wu, Q. (2016). Subjective cognitive impairment of older adults: A comparison between the US and China. International Journal of Methods in Psychiatric Research, 25(1), 6875.CrossRefGoogle ScholarPubMed