Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-18T13:29:37.477Z Has data issue: false hasContentIssue false

Biological markers and psychosis1

Published online by Cambridge University Press:  09 July 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorial
Copyright
Copyright © Cambridge University Press 1984

References

American Journal of Human Genetics (1983). The human gene map; 35, 134156.Google Scholar
Buchsbaum, M. S., Coursey, R. D. & Murphy, D. L. (1976). The biochemical high-risk paradigm: behavioral and familial correlates of low platelet monoamine oxidase activity. Science 194, 339341.CrossRefGoogle ScholarPubMed
Carroll, B. J. (1982). The dexamethasone suppression test for melancholia. British Journal of Psychiatry 140, 292304.CrossRefGoogle ScholarPubMed
Cloninger, C. R., Lewis, C., Rice, J. & Reich, T. (1981). Strategies for resolution of biological and cultural inheritance. In Genetic Research Strategies in Psychobiology and Psychiatry (ed. Gershon, E. S.Matthysse, S., Breakfield, X. O. and Ciaranello, R. D.), pp. 319332. Boxwood: Pacific Grove, California.Google Scholar
Coppen, A., Abou-Saleh, M., Milln, P., Metcalfe, M., Harwood, J. & Bailey, J. (1983). Dexamethasone suppression test in depression and other psychiatric illness. British Journal of Psychiatry 142, 498504.CrossRefGoogle ScholarPubMed
Coryell, W. & Schlesser, M. A. (1983). Dexamethasone suppression test response in major depression: stability across hospitalizations. Psychiatry Research 8, 179189.CrossRefGoogle ScholarPubMed
Giblett, E. R. (1969). Genetic Markers in Human Blood. Black well: Oxford.Google Scholar
Goldin, L. R., Gershon, E. S., Targum, S. D., Sparkes, R. S. & McGinniss, M. (1983). Segregation and linkage analyses in families of patients with bipolar and schizoaffective mood disorders. American Journal of Human Genetics 35, 274288.Google ScholarPubMed
Gottesman, I. I. & Shields, J. (1972). Schizophrenia and Genetics: A Twin Study Vantage Point. Academic Press: London.Google Scholar
Gottesman, I. I. & Shields, J. (1982). Schizophrenia, The Epigenetic Puzzle. Cambridge University Press: Cambridge.Google Scholar
Haier, R. J., Buchsbaum, M. S., Murphy, D. L., Gottesman, I. I. & Coursey, R. D. (1980). Psychiatric vulnerability, monoamine oxidase and the average evoked potential. Archives of General Psychiatry 35, 11981202.Google Scholar
Hällström, T., Samuelsson, S., Balldin, J., Wålinder, J., Bengtsson, C., Nyström, E., Andersen, B., Lindstedt, G. & Lundberg, P. A. (1983). Abnormal dexamethasone suppression test in normal females. British Journal of Psychiatry 142, 489497.CrossRefGoogle ScholarPubMed
Housman, D. & Gusella, J. (1981). Use of recombinant DNA techniques for linkage studies of genetically based neurological disorders. In Genetic Research Strategies in Psychobiology and Psychiatry (ed. Gershon, E. S., Matthysse, S., Breakfield, X. O. and Ciaranello, R. D.), pp. 1724. Boxwood: Pacific Grove, California.Google Scholar
Hwu, H., Rudorfer, M. V. & Clayton, P. J. (1981). Dexamethasone suppression test and subtypes of depression. (Letter to editor.) Archives of General Psychiatry 38, 363.CrossRefGoogle Scholar
Lange, K. & Boehnke, M. (1982). How many polymorphic marker genes will it take to span the human genome? American Journal of Human Genetics 34, 842845.Google ScholarPubMed
Leckman, J. F., Gershon, E. S., Nichols, A. J. & Murphy, D. C. (1977). Reduced MAO activity in first degree relatives of individuals with bipolar affective disorders. Archives of General Psychiatry 34, 601608.CrossRefGoogle ScholarPubMed
Major, L. F. & Murphy, D. L. (1978). Platelet and plasma amine oxidase activity in alcoholic individuals. British Journal of Psychiatry 132, 548553.CrossRefGoogle ScholarPubMed
McGuffin, P., Festenstein, H. & Murray, R. (1983). A family study of HLA antigens and other genetic markers in schizophrenia. Psychological Medicine 13, 3143.CrossRefGoogle ScholarPubMed
McKusick, V. A. (1983). Mendelian Inheritance in Man (6th edn). Johns Hopkins University Press: Baltimore.Google Scholar
McKusick, V. A. & Ruddle, F. H. (1977). The status of the gene map of the human chromosomes. Science 196, 390405.CrossRefGoogle ScholarPubMed
Murphy, D. L. & Weiss, R. (1972). Reduced monoamine oxidase activity in blood platelets from bipolar depressed patients. American Journal of Psychiatry 128, 3540.CrossRefGoogle ScholarPubMed
Nicol, S. E. & Gottesman, I. I. (1983). Clues to the genetics and neurobiology of schizophrenia. American Scientist 71, 398404.Google Scholar
Nies, A., Robinson, D. S., Lamborn, K. R. & Lampert, R. P. (1973). Genetic control of platelet and plasma monoamine oxidase activity. Archives of General Psychiatry 28, 834838.CrossRefGoogle ScholarPubMed
Nurnberger, J. I. & Gershon, E. S. (1982). Genetics. In Handbook of Affective Disorders (ed. Paykel, E. S.), pp. 126145. Churchill Livingstone: Edinburgh.Google Scholar
Pandey, E. W., Dorus, E., Shaughnessy, R. & Davis, J. M. (1979). Genetic control of platelet monoamine oxidase activity: studies on normal families. Life Sciences 25, 11731178.CrossRefGoogle ScholarPubMed
Penrose, L. S. (1952). Measurement of pleiotropic effects in phenylketonuria. Annals of Eugenics 18, 120124.CrossRefGoogle Scholar
Penrose, L. S. (1971). Psychiatric genetics (editorial). Psychological Medicine 1, 265266.CrossRefGoogle Scholar
Reich, T., Cloninger, C. R., Suarez, B. & Rice, J. (1982). Genetics of the affective disorders. In Handbook of Psychiatry: Psychoses of Unknown Aetiology (ed. Wing, J. K. and Wing, L.), pp. 147159. Cambridge University Press: Cambridge.Google Scholar
Reider, R. O. & Gershon, E. S. (1978). Genetic strategies in biological psychiatry. Archives of General Psychiatry 35, 866873.CrossRefGoogle Scholar
Reveley, M. A., Reveley, A. M., Clifford, C. A. & Murray, R. M. (1983). Genetics of platelet MAO activity in discordant schizophrenic and normal twins. British Journal of Psychiatry 142, 560565.CrossRefGoogle ScholarPubMed
Rice, J., McGuffin, P. & Shaskan, E. (1982). A commingling analysis of platelet monoamine oxidase activity. Psychiatry Research 7, 323335.CrossRefGoogle ScholarPubMed
Rice, J., McGuffin, P., Goldin, L. R., Shaskan, E. G. & Gershon, E. S. (1984). Platelet monoamine oxidase activity: evidence for a single major locus. American Journal of Human Genetics 36, 3643.Google ScholarPubMed
Schlesser, M. A., Winokur, G. & Sherman, B. M. (1979). Genetic subtypes of unipolar primary depressive illness distinguished by hypothalamic–pituitary–adrenal axis activity. Lancet i, 739740.CrossRefGoogle Scholar
Sullivan, J. L., Cavenar, J. P., Maltbie, R. A., Lisler, P. & Zung, W. W. K. (1979). Familial biochemical and clinical correlates of alcoholics with low platelet monoamine oxidase activity. Biological Psychiatry 14, 385392.Google ScholarPubMed
Vogel, F. & Propping, P. (1981). The electroencephalogram (EEG) as a research tool in human behavior genetics. In Genetic Research Strategies in Psychobiology and Psychiatry (ed. Gershon, E. S., Matthysse, S., Breakfield, X. O. and Ciaranello, R. D.), pp. 269282. Boxwood: Pacific Grove, California.Google Scholar
Wright, A. F., Crichton, D. N., Loudon, J. B., Morten, J. E. N. & Steel, C. M. (1984). β-adrenoceptor binding defects in cell lines from families with manic depressive disorder. Annals of Human Genetics (in the press).CrossRefGoogle Scholar
Wyatt, R. J., Murphy, D. L., Belmaker, R., Cohen, S., Donnelly, C. H. & Pollin, W. (1973). Reduced monoamine oxidase activity in platelets: a possible genetic marker for vulnerability to schizophrenia. Science 179, 916918.CrossRefGoogle ScholarPubMed
Wyatt, R. J., Potkin, S. G. & Murphy, D. L. (1979). Platelet monoamine oxidase activity in schizophrenia: a review of the data. American Journal of Psychiatry 136, 377382.CrossRefGoogle ScholarPubMed
Zuckerman, M. (1974). The sensation seeking motive. In Progress in Experimental Personality Research Vol. 7 (ed. Maher, B.), pp. 79148. Academic Press: New York.Google Scholar