Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T02:26:34.649Z Has data issue: false hasContentIssue false

Polygenic risk for schizophrenia and schizotypal traits in non-clinical subjects

Published online by Cambridge University Press:  06 August 2020

Igor Nenadić*
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
Tina Meller
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
Simon Schmitt
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
Frederike Stein
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
Katharina Brosch
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
Johannes Mosebach
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
Ulrich Ettinger
Affiliation:
Department of Psychology, Rheinische Friedrich-Wilhelms-Universität Bonn, Kaiser-Karl-Ring 9, 53111 Bonn, Germany
Phillip Grant
Affiliation:
Psychology School, Fresenius University of Applied Sciences, Marienburgstr. 6, 60528 Frankfurt, Germany Faculty of Life Science Engineering, Technische Hochschule Mittelhessen University of Applied Sciences, Giessen, Germany
Susanne Meinert
Affiliation:
Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
Nils Opel
Affiliation:
Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
Hannah Lemke
Affiliation:
Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
Stella Fingas
Affiliation:
Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
Katharina Förster
Affiliation:
Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
Tim Hahn
Affiliation:
Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
Andreas Jansen
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
Till F. M. Andlauer
Affiliation:
Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
Andreas J. Forstner
Affiliation:
Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany Centre for Human Genetics, Philipps-Universität Marburg, Baldingerstraße, 35033 Marburg, Germany
Stefanie Heilmann-Heimbach
Affiliation:
Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
Alisha S. M. Hall
Affiliation:
Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
Swapnil Awasthi
Affiliation:
Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin, Berlin, Germany
Stephan Ripke
Affiliation:
Department of Psychiatry and Psychotherapy, Charité – Universitätsmedizin, Berlin, Germany Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston MA 02114, USA Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge MA 02142, USA
Stephanie H. Witt
Affiliation:
Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
Marcella Rietschel
Affiliation:
Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
Bertram Müller-Myhsok
Affiliation:
Max-Planck-Institute of Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
Markus M. Nöthen
Affiliation:
Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
Udo Dannlowski
Affiliation:
Department of Psychiatry and Psychotherapy, Westfälische Wilhelms-Universität Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
Axel Krug
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany Department of Psychiatry and Psychotherapy, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
Fabian Streit
Affiliation:
Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany
Tilo Kircher
Affiliation:
Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany Center for Mind, Brain and Behavior (CMBB), Hans-Meerwein-Str. 6, 35032 Marburg, Germany
*
Author for correspondence: Igor Nenadić, E-mail: nenadic@staff.uni-marburg.de

Abstract

Background

Schizotypy is a putative risk phenotype for psychosis liability, but the overlap of its genetic architecture with schizophrenia is poorly understood.

Methods

We tested the hypothesis that dimensions of schizotypy (assessed with the SPQ-B) are associated with a polygenic risk score (PRS) for schizophrenia in a sample of 623 psychiatrically healthy, non-clinical subjects from the FOR2107 multi-centre study and a second sample of 1133 blood donors.

Results

We did not find correlations of schizophrenia PRS with either overall SPQ or specific dimension scores, nor with adjusted schizotypy scores derived from the SPQ (addressing inter-scale variance). Also, PRS for affective disorders (bipolar disorder and major depression) were not significantly associated with schizotypy.

Conclusions

This important negative finding demonstrates that despite the hypothesised continuum of schizotypy and schizophrenia, schizotypy might share less genetic risk with schizophrenia than previously assumed (and possibly less compared to psychotic-like experiences).

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Shared first authorship.

Shared senior authorship.

References

Aichert, D. S., Williams, S. C., Moller, H. J., Kumari, V., & Ettinger, U. (2012). Functional neural correlates of psychometric schizotypy: An fMRI study of antisaccades. Psychophysiology, 49(3), 345356. doi: 10.1111/j.1469-8986.2011.01306.x.CrossRefGoogle ScholarPubMed
Asai, T., Sugimori, E., Bando, N., & Tanno, Y. (2011). The hierarchic structure in schizotypy and the five-factor model of personality. Psychiatry Research, 185(1–2), 7883.CrossRefGoogle ScholarPubMed
Barrantes-Vidal, N., Chun, C. A., Myin-Germeys, I., & Kwapil, T. R. (2013). Psychometric schizotypy predicts psychotic-like, paranoid, and negative symptoms in daily life. Journal of Abnormal Psychology, 122(4), 10771087. doi: 10.1037/a0034793.CrossRefGoogle ScholarPubMed
Barrantes-Vidal, N., Grant, P., & Kwapil, T. R. (2015). The role of schizotypy in the study of the etiology of schizophrenia spectrum disorders. Schizophrenia Bulletin, 41(Suppl 2), S408S416. doi:10.1093/schbul/sbu191.CrossRefGoogle Scholar
Barron, D., Voracek, M., Tran, U. S., Ong, H. S., Morgan, K. D., Towell, T., & Swami, V. (2018). A reassessment of the higher-order factor structure of the German Schizotypal Personality Questionnaire (SPQ-G) in German-speaking adults. Psychiatry Research, 269, 328336. doi: 10.1016/j.psychres.2018.08.070.CrossRefGoogle Scholar
Chapman, L. J., Chapman, J. P., Kwapil, T. R., Eckblad, M., & Zinser, M. C. (1994). Putatively psychosis-prone subjects 10 years later. Journal of Abnormal Psychology, 103(2), 171183.CrossRefGoogle ScholarPubMed
Derks, E. M., Vorstman, J. A., Ripke, S., Kahn, R. S., Schizophrenia Psychiatric Genomic, C., & Ophoff, R. A. (2012). Investigation of the genetic association between quantitative measures of psychosis and schizophrenia: A polygenic risk score analysis. PLoS One, 7(6), e37852. doi:10.1371/journal.pone.0037852.CrossRefGoogle ScholarPubMed
Eichstaedt, K. E., Kovatch, K., & Maroof, D. A. (2013). A less conservative method to adjust for familywise error rate in neuropsychological research: The Holm's sequential Bonferroni procedure. NeuroRehabilitation, 32(3), 693696. doi: 10.3233/nre-130893.CrossRefGoogle ScholarPubMed
Ericson, M., Tuvblad, C., Raine, A., Young-Wolff, K., & Baker, L. A. (2011). Heritability and longitudinal stability of schizotypal traits during adolescence. Behavioral Genetics, 41(4), 499511. doi: 10.1007/s10519-010-9401-x.CrossRefGoogle ScholarPubMed
Ettinger, U., Mohr, C., Gooding, D. C., Cohen, A. S., Rapp, A., Haenschel, C., & Park, S. (2015). Cognition and brain function in schizotypy: A selective review. Schizophrenia Bulletin, 41(Suppl 2), S417S426. doi:10.1093/schbul/sbu190.CrossRefGoogle ScholarPubMed
Ettinger, U., Williams, S. C., Meisenzahl, E. M., Moller, H. J., Kumari, V., & Koutsouleris, N. (2012). Association between brain structure and psychometric schizotypy in healthy individuals. World Journal of Biological Psychiatry, 13(7), 544549. doi: 10.3109/15622975.2011.559269.CrossRefGoogle ScholarPubMed
Fanous, A. H., Neale, M. C., Gardner, C. O., Webb, B. T., Straub, R. E., O'Neill, F. A., … Kendler, K. S. (2007). Significant correlation in linkage signals from genome-wide scans of schizophrenia and schizotypy. Molecular Psychiatry, 12(10), 958965. doi: 10.1038/sj.mp.4001996.CrossRefGoogle ScholarPubMed
Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175191.CrossRefGoogle ScholarPubMed
Filatova, S., Koivumaa-Honkanen, H., Khandaker, G. M., Lowry, E., Nordstrom, T., Hurtig, T., … Miettunen, J. (2018). Early motor developmental milestones and schizotypy in the Northern Finland Birth Cohort Study 1966. Schizophrenia Bulletin, 44(5), 11511158. doi: 10.1093/schbul/sbx165.CrossRefGoogle ScholarPubMed
Flückiger, R., Michel, C., Grant, P., Ruhrmann, S., Vogeley, K., Hubl, D., … Schultze-Lutter, F. (2019). The interrelationship between schizotypy, clinical high risk for psychosis and related symptoms: Cognitive disturbances matter. Schizophrenia Research, 210, 188196. doi: 10.1016/j.schres.2018.12.039.CrossRefGoogle ScholarPubMed
Flückiger, R., Ruhrmann, S., Debbane, M., Michel, C., Hubl, D., Schimmelmann, B. G., … Schultze-Lutter, F. (2016). Psychosis-predictive value of self-reported schizotypy in a clinical high-risk sample. Journal of Abnormal Psychology, 125(7), 923932. doi: 10.1037/abn0000192.CrossRefGoogle Scholar
Fonseca-Pedrero, E., Ortuno-Sierra, J., Lucas-Molina, B., Debbane, M., Chan, R. C. K., Cicero, D. C., … Voracek, M. (2017). Brief assessment of schizotypal traits: A multinational study. Schizophrenia Research, 197, 182191. doi: 10.1016/j.schres.2017.10.043.CrossRefGoogle ScholarPubMed
Fonseca-Pedrero, E., Ortuno, J., Debbane, M., Chan, R. C. K., Cicero, D., Zhang, L. C., … Fried, E. I. (2018). The network structure of schizotypal personality traits. Schizophrenia Bulletin, 44(Suppl 2), S468S479. doi:10.1093/schbul/sby044.CrossRefGoogle Scholar
Gooding, D. C., Tallent, K. A., & Matts, C. W. (2007). Rates of avoidant, schizotypal, schizoid and paranoid personality disorders in psychometric high-risk groups at 5-year follow-up. Schizophrenia Research, 94(1–3), 373374. doi: 10.1016/j.schres.2007.04.018.CrossRefGoogle ScholarPubMed
Grant, P. (2015). Is schizotypy per se a suitable endophenotype of schizophrenia? – Do not forget to distinguish positive from negative facets. Frontiers in Psychiatry, 6, 143. doi: 10.3389/fpsyt.2015.00143.CrossRefGoogle Scholar
Grant, P., Green, M. J., & Mason, O. J. (2018). Models of schizotypy: The importance of conceptual clarity. Schizophrenia Bulletin, 44(Suppl 2), S556S563. doi:10.1093/schbul/sby012.CrossRefGoogle ScholarPubMed
Grant, P., & Hennig, J. (2020). Schizotypy, social stress and the emergence of psychotic-like states - A case for benign schizotypy? Schizophrenia Research, 216, 435442. doi: 10.1016/j.schres.2019.10.052.CrossRefGoogle Scholar
Grech, A., van Os, J., & Investigators, G. (2017). Evidence that the urban environment moderates the level of familial clustering of positive psychotic symptoms. Schizophrenia Bulletin, 43(2), 325331. doi: 10.1093/schbul/sbw186.CrossRefGoogle ScholarPubMed
Gross, G. M., Mellin, J., Silvia, P. J., Barrantes-Vidal, N., & Kwapil, T. R. (2014). Comparing the factor structure of the Wisconsin schizotypy scales and the schizotypal personality questionnaire. Personality Disorders: Theory, Research, and Treatment, 5(4), 397.CrossRefGoogle ScholarPubMed
Hatzimanolis, A., Avramopoulos, D., Arking, D. E., Moes, A., Bhatnagar, P., Lencz, T., … Stefanis, N. C. (2018). Stress-dependent association between polygenic risk for schizophrenia and schizotypal traits in young army recruits. Schizophrenia Bulletin, 44(2), 338347. doi: 10.1093/schbul/sbx074.CrossRefGoogle ScholarPubMed
Hay, D. A., Martin, N. G., Foley, D., Treloar, S. A., Kirk, K. M., & Heath, A. C. (2001). Phenotypic and genetic analyses of a short measure of psychosis-proneness in a large-scale Australian twin study. Twin Research, 4(1), 3040. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11665322.CrossRefGoogle Scholar
Henriksen, M. G., Nordgaard, J., & Jansson, L. B. (2017). Genetics of schizophrenia: Overview of methods, findings and limitations. Frontiers in Human Neuroscience, 11, 322. doi: 10.3389/fnhum.2017.00322.CrossRefGoogle ScholarPubMed
Hyman, S. E. (2018). The daunting polygenicity of mental illness: Making a new map. Philosophical Transactions of the Royal Society of London: B Biological Sciences, 373(1742), 20170031. doi: 10.1098/rstb.2017.0031.CrossRefGoogle ScholarPubMed
Jones, H. J., Stergiakouli, E., Tansey, K. E., Hubbard, L., Heron, J., Cannon, M., … Zammit, S. (2016). Phenotypic manifestation of genetic risk for schizophrenia during adolescence in the general population. JAMA Psychiatry, 73(3), 221228. doi: 10.1001/jamapsychiatry.2015.3058.CrossRefGoogle ScholarPubMed
Karcher, N. R., Barch, D. M., Demers, C. H., Baranger, D. A. A., Heath, A. C., Lynskey, M. T., & Agrawal, A. (2019). Genetic predisposition vs individual-specific processes in the association between psychotic-like experiences and cannabis use. JAMA Psychiatry, 76(1), 8794. doi: 10.1001/jamapsychiatry.2018.2546.CrossRefGoogle ScholarPubMed
Kircher, T., Wohr, M., Nenadic, I., Schwarting, R., Schratt, G., Alferink, J., … Dannlowski, U. (2019). Neurobiology of the major psychoses: A translational perspective on brain structure and function-the FOR2107 consortium. European Archives of Psychiatry and Clinical Neuroscience, 269(8), 949962. doi: 10.1007/s00406-018-0943-x.CrossRefGoogle ScholarPubMed
Klein, C., Andresen, B., & Jahn, T. (1997). Erfassung der schizotypen Persönlichkeit nach DSM-III-R: Psychometrische Eigenschaften einer autorisierten deutschsprachigen Übersetzung des “Schizotypal Personality Questionnaire” (SPQ) von Raine. Diagnostica, 43(4), 347369.Google Scholar
Kwapil, T. R., Gross, G. M., Silvia, P. J., & Barrantes-Vidal, N. (2013). Prediction of psychopathology and functional impairment by positive and negative schizotypy in the Chapmans' ten-year longitudinal study. Journal of Abnormal Psychology, 122(3), 807815. doi: 10.1037/a0033759.CrossRefGoogle ScholarPubMed
Legge, S. E., Jones, H. J., Kendall, K. M., Pardinas, A. F., Menzies, G., Bracher-Smith, M., … Walters, J. T. R. (2019). Association of genetic liability to psychotic experiences with neuropsychotic disorders and traits. JAMA Psychiatry, 76(12), 12561265. doi: 10.1001/jamapsychiatry.2019.2508.CrossRefGoogle ScholarPubMed
Linney, Y. M., Murray, R. M., Peters, E. R., MacDonald, A. M., Rijsdijk, F., & Sham, P. C. (2003). A quantitative genetic analysis of schizotypal personality traits. Psychological Medicine, 33(5), 803816.CrossRefGoogle ScholarPubMed
Lui, S. S. Y., Hung, K. S. Y., Wang, Y., Ho, K. K. Y., Yeung, H. K. H., Wang, Y., … Chan, R. C. K. (2018). Clustering of schizotypal features in unaffected first-degree relatives of schizophrenia patients. Schizophrenia Bulletin, 44(Suppl 2), S536S546. doi:10.1093/schbul/sby035.CrossRefGoogle ScholarPubMed
Macare, C., Bates, T. C., Heath, A. C., Martin, N. G., & Ettinger, U. (2012). Substantial genetic overlap between schizotypy and neuroticism: A twin study. Behavior Genetics, 42(5), 732742.CrossRefGoogle ScholarPubMed
Mallet, J., Le Strat, Y., Dubertret, C., & Gorwood, P. (2020). Polygenic risk scores shed light on the relationship between schizophrenia and cognitive functioning: Review and meta-analysis. Journal of Clinical Medicine, 9(2), 341. doi: 10.3390/jcm9020341.CrossRefGoogle ScholarPubMed
Matheson, S., & Langdon, R. (2008). Schizotypal traits impact upon executive working memory and aspects of IQ. Psychiatry Research, 159(1–2), 207214. doi: 10.1016/j.psychres.2007.04.006.CrossRefGoogle ScholarPubMed
Meller, T., Schmitt, S., Stein, F., Brosch, K., Mosebach, J., Yuksel, D., … Nenadic, I. (2019). Associations of schizophrenia risk genes ZNF804A and CACNA1C with schizotypy and modulation of attention in healthy subjects. Schizophrenia Research, 208, 6775. doi: 10.1016/j.schres.2019.04.018.CrossRefGoogle ScholarPubMed
Mistry, S., Harrison, J. R., Smith, D. J., Escott-Price, V., & Zammit, S. (2017). The use of polygenic risk scores to identify phenotypes associated with genetic risk of schizophrenia: Systematic review. Schizophrenia Research, 197, 28. doi: 10.1016/j.schres.2017.10.037.CrossRefGoogle ScholarPubMed
Mistry, S., Harrison, J. R., Smith, D. J., Escott-Price, V., & Zammit, S. (2018). The use of polygenic risk scores to identify phenotypes associated with genetic risk of bipolar disorder and depression: A systematic review. Journal of Affective Disorders, 234, 148155. doi: 10.1016/j.jad.2018.02.005.CrossRefGoogle ScholarPubMed
Modinos, G., Mechelli, A., Ormel, J., Groenewold, N. A., Aleman, A., & McGuire, P. K. (2010). Schizotypy and brain structure: A voxel-based morphometry study. Psychological Medicine, 40(9), 14231431. doi: 10.1017/S0033291709991875.CrossRefGoogle ScholarPubMed
Mowry, B. J., & Gratten, J. (2013). The emerging spectrum of allelic variation in schizophrenia: Current evidence and strategies for the identification and functional characterization of common and rare variants. Molecular Psychiatry, 18(1), 3852. doi: 10.1038/mp.2012.34.CrossRefGoogle ScholarPubMed
Nelson, M. T., Seal, M. L., Pantelis, C., & Phillips, L. J. (2013). Evidence of a dimensional relationship between schizotypy and schizophrenia: A systematic review. Neuroscience & Biobehavioral Reviews, 37(3), 317327. doi: 10.1016/j.neubiorev.2013.01.004.CrossRefGoogle ScholarPubMed
Nenadic, I., Lorenz, C., Langbein, K., Dietzek, M., Smesny, S., Schonfeld, N., … Gaser, C. (2015). Brain structural correlates of schizotypy and psychosis proneness in a non-clinical healthy volunteer sample. Schizophrenia Research, 168(1–2), 3743. doi: 10.1016/j.schres.2015.06.017.CrossRefGoogle Scholar
Oezgen, M., & Grant, P. (2018). Odd and disorganized-comparing the factor structure of the three major schizotypy inventories. Psychiatry Research, 267, 289295. doi: 10.1016/j.psychres.2018.06.009.CrossRefGoogle ScholarPubMed
Opel, N., Amare, A. T., Redlich, R., Repple, J., Kaehler, C., Grotegerd, D., … Dannlowski, U. (2018). Cortical surface area alterations shaped by genetic load for neuroticism. Molecular Psychiatry. doi: 10.1038/s41380-018-0236-9.Google ScholarPubMed
Ortega-Alonso, A., Ekelund, J., Sarin, A. P., Miettunen, J., Veijola, J., Jarvelin, M. R., & Hennah, W. (2017). Genome-Wide association study of psychosis proneness in the Finnish population. Schizophrenia Bulletin, 43(6), 13041314. doi: 10.1093/schbul/sbx006.CrossRefGoogle ScholarPubMed
Pain, O., Dudbridge, F., Cardno, A. G., Freeman, D., Lu, Y., Lundstrom, S., … Ronald, A. (2018). Genome-wide analysis of adolescent psychotic-like experiences shows genetic overlap with psychiatric disorders. American Journal of Medical Genetics Part B Neuropsychiatric Genetics, 177(4), 416425. doi: 10.1002/ajmg.b.32630.CrossRefGoogle ScholarPubMed
Racioppi, A., Sheinbaum, T., Gross, G. M., Ballespi, S., Kwapil, T. R., & Barrantes-Vidal, N. (2018). Prediction of prodromal symptoms and schizophrenia-spectrum personality disorder traits by positive and negative schizotypy: A 3-year prospective study. PLoS One, 13(11), e0207150. doi: 10.1371/journal.pone.0207150.CrossRefGoogle ScholarPubMed
Raine, A. (1991). The SPQ: A scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophrenia Bulletin, 17(4), 555564. doi: 10.1093/schbul/17.4.555.CrossRefGoogle ScholarPubMed
R Core Team. (2018). R: A Language And Environment For Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Ronald, A., & Pain, O. (2018). A systematic review of genome-wide research on psychotic experiences and negative symptom traits: New revelations and implications for psychiatry. Human Molecular Genetics, 27(R2), R136R152. doi: 10.1093/hmg/ddy157.Google ScholarPubMed
Rosa, A., van Os, J., Fananas, L., Barrantes, N., Caparros, B., Gutierrez, B., & Obiols, J. (2000). Developmental instability and schizotypy. Schizophrenia Research, 43(2-3), 125134.CrossRefGoogle ScholarPubMed
Rössler, J., Unterassner, L., Wyss, T., Haker, H., Brugger, P., Rössler, W., & Wotruba, D. (2018). Schizotypal traits are linked to dopamine-induced striato-cortical decoupling: A randomized double-blind placebo-controlled study. Schizophrenia Bulletin, 45(3), 680688. doi: 10.1093/schbul/sby079.CrossRefGoogle Scholar
RStudio Team. (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. Retrieved from http://www.rstudio.com/.Google Scholar
Schizophrenia Working Group of the Psychiatric Genomics, C (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421427. doi: 10.1038/nature13595.CrossRefGoogle Scholar
Schultze-Lutter, F., Nenadic, I., & Grant, P. (2019). Psychosis and schizophrenia-spectrum personality disorders require early detection on different symptom dimensions. Frontiers in Psychiatry, 10, 476. doi: 10.3389/fpsyt.2019.00476.CrossRefGoogle ScholarPubMed
Siddi, S., Petretto, D. R., & Preti, A. (2017). Neuropsychological correlates of schizotypy: A systematic review and meta-analysis of cross-sectional studies. Cognitive Neuropsychiatry, 22(3), 186212. doi: 10.1080/13546805.2017.1299702.CrossRefGoogle ScholarPubMed
Sieradzka, D., Power, R. A., Freeman, D., Cardno, A. G., McGuire, P., Plomin, R., … Ronald, A. (2014). Are genetic risk factors for psychosis also associated with dimension-specific psychotic experiences in adolescence? PLoS One, 9(4), e94398. doi: 10.1371/journal.pone.0094398.CrossRefGoogle ScholarPubMed
Siever, L. J., & Davis, K. L. (2004). The pathophysiology of schizophrenia disorders: Perspectives from the spectrum. American Journal of Psychiatry, 161(3), 398413. doi: 10.1176/appi.ajp.161.3.398.CrossRefGoogle ScholarPubMed
Smeland, O. B., Bahrami, S., Frei, O., Shadrin, A., O'Connell, K., Savage, J., … Andreassen, O. A. (2020). Genome-wide analysis reveals extensive genetic overlap between schizophrenia, bipolar disorder, and intelligence. Molecular Psychiatry, 25(4), 844853. doi: 10.1038/s41380-018-0332-x.CrossRefGoogle ScholarPubMed
Soler, J., Arias, B., Moya, J., Ibanez, M. I., Ortet, G., Fananas, L., & Fatjo-Vilas, M. (2019). The interaction between the ZNF804A gene and cannabis use on the risk of psychosis in a non-clinical sample. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 89, 174180. doi: 10.1016/j.pnpbp.2018.08.009.CrossRefGoogle Scholar
Stahl, E. A., Breen, G., Forstner, A. J., McQuillin, A., Ripke, S., Trubetskoy, V., … Sklar, P. (2019). Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 51(5), 793803. doi: 10.1038/s41588-019-0397-8.CrossRefGoogle ScholarPubMed
Steffens, M., Meyhofer, I., Fassbender, K., Ettinger, U., & Kambeitz, J. (2018). Association of schizotypy with dimensions of cognitive control: A meta-analysis. Schizophrenia Bulletin, 44(Suppl 2), S512S524. doi:10.1093/schbul/sby030.CrossRefGoogle ScholarPubMed
Stouffer, S. A., Suchman, E. A., DeVinney, L. C., Star, S. A., & Williams, R. M. J. (1949). The American soldier, vol 1: Adjustment during army life. Princeton, NJ: Princeton University Press.Google Scholar
Sullivan, P. F., & Geschwind, D. H. (2019). Defining the genetic, genomic, cellular, and diagnostic architectures of psychiatric disorders. Cell, 177(1), 162183. doi: 10.1016/j.cell.2019.01.015.CrossRefGoogle ScholarPubMed
Taurisano, P., Romano, R., Mancini, M., Giorgio, A. D., Antonucci, L. A., Fazio, L., … Bertolino, A. (2014). Prefronto-striatal physiology is associated with schizotypy and is modulated by a functional variant of DRD2. Frontiers in Behavioral Neuroscience, 8, 235. doi: 10.3389/fnbeh.2014.00235.CrossRefGoogle ScholarPubMed
van der Merwe, C., Passchier, R., Mufford, M., Ramesar, R., Dalvie, S., & Stein, D. J. (2019). Polygenic risk for schizophrenia and associated brain structural changes: A systematic review. Comprehensive Psychiatry, 88, 7782. doi: 10.1016/j.comppsych.2018.11.014.CrossRefGoogle ScholarPubMed
van Os, J. (2014). The many continua of psychosis. JAMA Psychiatry, 71(9), 985986. doi: 10.1001/jamapsychiatry.2014.1068.CrossRefGoogle Scholar
van Os, J., Pries, L. K., Delespaul, P., Kenis, G., Luykx, J. J., Lin, B. D., … Guloksuz, S. (2019). Replicated evidence that endophenotypic expression of schizophrenia polygenic risk is greater in healthy siblings of patients compared to controls, suggesting gene-environment interaction. The EUGEI study. Psychological Medicine, 114. doi: 10.1017/s003329171900196x.Google ScholarPubMed
van Os, J., & Reininghaus, U. (2016). Psychosis as a transdiagnostic and extended phenotype in the general population. World Psychiatry, 15(2), 118124. doi: 10.1002/wps.20310.CrossRefGoogle ScholarPubMed
Venables, P. H., & Raine, A. (2015). The stability of schizotypy across time and instruments. Psychiatry Research, 228(3), 585590. doi: 10.1016/j.psychres.2015.05.047.CrossRefGoogle ScholarPubMed
Walter, E. E., Fernandez, F., Snelling, M., & Barkus, E. (2016). Genetic consideration of schizotypal traits: A review. Frontiers in Psychology, 7, 1769. doi: 10.3389/fpsyg.2016.01769.CrossRefGoogle ScholarPubMed
Waltmann, M., O'Daly, O., Egerton, A., McMullen, K., Kumari, V., Barker, G. J., … Modinos, G. (2019). Multi-echo fMRI, resting-state connectivity, and high psychometric schizotypy. Neuroimage Clinical, 21, 101603. doi: 10.1016/j.nicl.2018.11.013.CrossRefGoogle ScholarPubMed
Wang, Y., Ettinger, U., Meindl, T., & Chan, R. C. K. (2018). Association of schizotypy with striatocortical functional connectivity and its asymmetry in healthy adults. Human Brain Mapping, 39(1), 288299. doi: doi:10.1002/hbm.23842.CrossRefGoogle ScholarPubMed
Witt, S. H., Streit, F., Jungkunz, M., Frank, J., Awasthi, S., Reinbold, C. S., … Rietschel, M. (2017). Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia. Translational Psychiatry, 7(6), e1155. doi: 10.1038/tp.2017.115.CrossRefGoogle Scholar
Wittchen, H.-U., Wunderlich, U., Gruschwitz, S., & Zaudig, M. (1997). SKID-I. Strukturiertes klinisches interview für DSM-IV. Göttingen: Hogrefe.Google Scholar
Woodward, N. D., Cowan, R. L., Park, S., Ansari, M. S., Baldwin, R. M., Li, R., … Zald, D. H. (2011). Correlation of individual differences in schizotypal personality traits with amphetamine-induced dopamine release in striatal and extrastriatal brain regions. American Journal of Psychiatry, 168(4), 418426. doi: 10.1176/appi.ajp.2010.10020165.CrossRefGoogle ScholarPubMed
Wray, N. R., Ripke, S., Mattheisen, M., Trzaskowski, M., Byrne, E. M., Abdellaoui, A., … Major Depressive Disorder Working Group of the Psychiatric Genomics, C. (2018). Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 50(5), 668681. doi:10.1038/s41588-018-0090-3.CrossRefGoogle ScholarPubMed
Zammit, S., Hamshere, M., Dwyer, S., Georgiva, L., Timpson, N., Moskvina, V., … O'Donovan, M. C. (2014). A population-based study of genetic variation and psychotic experiences in adolescents. Schizophrenia Bulletin, 40(6), 12541262. doi: 10.1093/schbul/sbt146.CrossRefGoogle ScholarPubMed
Supplementary material: File

Nenadić et al. supplementary material

Nenadić et al. supplementary material

Download Nenadić et al. supplementary material(File)
File 2.4 MB