Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-gsnzm Total loading time: 0.599 Render date: 2022-09-29T21:19:40.616Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Effects of polygenic risk of schizophrenia on interhemispheric callosal white matter integrity and frontotemporal functional connectivity in first-episode schizophrenia

Published online by Cambridge University Press:  07 January 2022

Wenjun Su
Affiliation:
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai200030, China
Aihua Yuan
Affiliation:
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai200030, China
Yingying Tang
Affiliation:
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai200030, China
Lihua Xu
Affiliation:
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai200030, China
Yanyan Wei
Affiliation:
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai200030, China
Yingchan Wang*
Affiliation:
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai200030, China
Zhixing Li
Affiliation:
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai200030, China
Huiru Cui
Affiliation:
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai200030, China
Zhenying Qian
Affiliation:
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai200030, China
Xiaochen Tang
Affiliation:
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai200030, China
Yegang Hu
Affiliation:
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai200030, China
Tianhong Zhang
Affiliation:
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai200030, China
Jianfeng Feng
Affiliation:
Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
Zhiqiang Li
Affiliation:
Affiliated Hospital of Qingdao University & Biomedical Sciences Institute of Qingdao University, Qingdao University, Qingdao266000, China Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai200240, China
Jie Zhang
Affiliation:
Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai200433, China
Jijun Wang*
Affiliation:
Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai200030, China CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Science, Shanghai200031, China Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai200240, China
*
Author for correspondence: Jijun Wang, E-mail: jijunwang27@163.com; Jie Zhang, E-mail: jzhang080@gmail.com; Zhiqiang Li, E-mail: lizqsjtu@163.com
Author for correspondence: Jijun Wang, E-mail: jijunwang27@163.com; Jie Zhang, E-mail: jzhang080@gmail.com; Zhiqiang Li, E-mail: lizqsjtu@163.com

Abstract

Background

Schizophrenia is a severely debilitating psychiatric disorder with high heritability and polygenic architecture. A higher polygenic risk score for schizophrenia (SzPRS) has been associated with smaller gray matter volume, lower activation, and decreased functional connectivity (FC). However, the effect of polygenic inheritance on the brain white matter microstructure has only been sparsely reported.

Methods

Eighty-four patients with first-episode schizophrenia (FES) patients and ninety-three healthy controls (HC) with genetics, diffusion tensor imaging (DTI), and resting-state functional magnetic resonance imaging (rs-fMRI) data were included in our study. We investigated impaired white matter integrity as measured by fractional anisotropy (FA) in the FES group, further examined the effect of SzPRS on white matter FA and FC in the regions connected by SzPRS-related white matter tracts.

Results

Decreased FA was observed in FES in many commonly identified regions. Among these regions, we observed that in the FES group, but not the HC group, SzPRS was negatively associated with the mean FA in the genu and body of corpus callosum, right anterior corona radiata, and right superior corona radiata. Higher SzPRS was also associated with lower FCs between the left inferior frontal gyrus (IFG)–left inferior temporal gyrus (ITG), right IFG–left ITG, right IFG–left middle frontal gyrus (MFG), and right IFG–right MFG in the FES group.

Conclusion

Higher polygenic risks are linked with disrupted white matter integrity and FC in patients with schizophrenia. These correlations are strongly driven by the interhemispheric callosal fibers and the connections between frontotemporal regions.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this work.

These 3 authors share joint correspondence in the work.

References

Alloza, C., Cox, S. R., Blesa Cabez, M., Redmond, P., Whalley, H. C., Ritchie, S. J., … Bastin, M. E. (2018). Polygenic risk score for schizophrenia and structural brain connectivity in older age: A longitudinal connectome and tractography study. Neuroimage, 183, 884896. doi: 10.1016/j.neuroimage.2018.08.075CrossRefGoogle ScholarPubMed
Benetti, S., Mechelli, A., Picchioni, M., Broome, M., Williams, S., & McGuire, P. (2009). Functional integration between the posterior hippocampus and prefrontal cortex is impaired in both first-episode schizophrenia and the at-risk mental state. Brain, 132(Pt 9), 24262436. doi: 10.1093/brain/awp098CrossRefGoogle ScholarPubMed
Bohlken, M. M., Brouwer, R. M., Mandl, R. C., Kahn, R. S., & Hulshoff Pol, H. E. (2016a). Genetic variation in schizophrenia liability is shared with intellectual ability and brain structure. Schizophrenia Bulletin, 42(5), 11671175. doi: 10.1093/schbul/sbw034CrossRefGoogle Scholar
Bohlken, M. M., Brouwer, R. M., Mandl, R. C., Van den Heuvel, M. P., Hedman, A. M., De Hert, M., … Hulshoff Pol, H. E. (2016b). Structural brain connectivity as a genetic marker for schizophrenia. JAMA Psychiatry, 73(1), 1119. doi: 10.1001/jamapsychiatry.2015.1925CrossRefGoogle Scholar
Bose, A., Shivakumar, V., Agarwal, S. M., Kalmady, S. V., Shenoy, S., Sreeraj, V. S., … Venkatasubramanian, G. (2018). Efficacy of frontotemporal transcranial direct current stimulation for refractory auditory verbal hallucinations in schizophrenia: A randomized, double-blind, sham-controlled study. Schizophrenia Research, 195, 475480. doi: 10.1016/j.schres.2017.08.047CrossRefGoogle Scholar
Brady, R. O. Jr., Gonsalvez, I., Lee, I., Öngür, D., Seidman, L. J., Schmahmann, J. D., … Halko, M. A. (2019). Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. The American Journal of Psychiatry, 176(7), 512520. doi: 10.1176/appi.ajp.2018.18040429CrossRefGoogle Scholar
Cetin-Karayumak, S., Di Biase, M. A., Chunga, N., Reid, B., Somes, N., Lyall, A. E., … Kubicki, M. (2020). White matter abnormalities across the lifespan of schizophrenia: A harmonized multi-site diffusion MRI study. Molecular Psychiatry, 25, 32083219. doi: 10.1038/s41380-019-0509-y.CrossRefGoogle ScholarPubMed
Chen, Q., Ursini, G., Romer, A. L., Knodt, A. R., Mezeivtch, K., Xiao, E., … Weinberger, D. R. (2018). Schizophrenia polygenic risk score predicts mnemonic hippocampal activity. Brain, 141(4), 12181228. doi: 10.1093/brain/awy004CrossRefGoogle ScholarPubMed
Chiang, M. C., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., Hickie, I., Toga, A. W., … Thompson, P. M. (2011). Genetics of white matter development: A DTI study of 705 twins and their siblings aged 12 to 29. Neuroimage, 54(3), 23082317. doi: 10.1016/j.neuroimage.2010.10.015CrossRefGoogle ScholarPubMed
Choi, S. W., Mak, T. S., & O'Reilly, P. F. (2020). Tutorial: A guide to performing polygenic risk score analyses. Nature Protocols, 15(9), 27592772. doi: 10.1038/s41596-020-0353-1CrossRefGoogle ScholarPubMed
Curcic-Blake, B., Nanetti, L., van der Meer, L., Cerliani, L., Renken, R., Pijnenborg, G. H., & Aleman, A. (2015). Not on speaking terms: Hallucinations and structural network disconnectivity in schizophrenia. Brain Structure and Function, 220(1), 407418. doi: 10.1007/s00429-013-0663-yCrossRefGoogle Scholar
Demeter, S., Rosene, D. L., & Van Hoesen, G. W. (1990). Fields of origin and pathways of the interhemispheric commissures in the temporal lobe of macaques. The Journal of Comparative Neurology, 302(1), 2953. doi: 10.1002/cne.903020104CrossRefGoogle ScholarPubMed
Ellison-Wright, I., & Bullmore, E. (2009). Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Research, 108(1-3), 310. doi: 10.1016/j.schres.2008.11.021CrossRefGoogle Scholar
Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., … Jiang, T. (2016). The human brainnetome atlas: A new brain atlas based on connectional architecture. Cerebral Cortex, 26(8), 35083526. doi: 10.1093/cercor/bhw157CrossRefGoogle ScholarPubMed
Friston, K. J. (1999). Schizophrenia and the disconnection hypothesis. Acta Psychiatrica Scandinavica Supplementum, 395, 6879. doi: 10.1111/j.1600-0447.1999.tb05985.xCrossRefGoogle ScholarPubMed
Georgy, B. A., Hesselink, J. R., & Jernigan, T. L. (1993). MR imaging of the corpus callosum. American Journal of Roentgenology, 160(5), 949955. doi: 10.2214/ajr.160.5.8470609CrossRefGoogle ScholarPubMed
Glahn, D. C., Kent, J. W. Jr., Sprooten, E., Diego, V. P., Winkler, A. M., Curran, J. E., … Blangero, J. (2013). Genetic basis of neurocognitive decline and reduced white-matter integrity in normal human brain aging. Proceedings of the National Academy of Sciences of the United States of America, 110(47), 1900619011. doi: 10.1073/pnas.1313735110CrossRefGoogle ScholarPubMed
Guo, W., Hu, M., Fan, X., Liu, F., Wu, R., Chen, J., … Zhao, J. (2014). Decreased gray matter volume in the left middle temporal gyrus as a candidate biomarker for schizophrenia: A study of drug naive, first-episode schizophrenia patients and unaffected siblings. Schizophrenia Research, 159(1), 4350. doi: 10.1016/j.schres.2014.07.051CrossRefGoogle ScholarPubMed
Harrisberger, F., Smieskova, R., Egli, T., Simon, A. E., Riecher-Rossler, A., Fusar-Poli, P., … Borgwardt, S. (2018). Impact on the onset of psychosis of a polygenic schizophrenia-related risk score and changes in white matter volume. Cellular Physiology and Biochemistry, 48(3), 12011214. doi: 10.1159/000491986CrossRefGoogle ScholarPubMed
Harrisberger, F., Smieskova, R., Vogler, C., Egli, T., Schmidt, A., Lenz, C., … Borgwardt, S. (2016). Impact of polygenic schizophrenia-related risk and hippocampal volumes on the onset of psychosis. Translational Psychiatry, 6(8), e868. doi: 10.1038/tp.2016.143CrossRefGoogle Scholar
Häfner, H., Maurer, K., Löffler, W., Fätkenheuer, B., An der Heiden, W., Riecher-Rössler, A., … Gattaz, W. F. (1994). The epidemiology of early schizophrenia. Influence of age and gender on onset and early course. The British Journal of Psychiatry. Supplement 23, 2938.CrossRefGoogle Scholar
Hubl, D., Koenig, T., Strik, W., Federspiel, A., Kreis, R., Boesch, C., … Dierks, T. (2004). Pathways that make voices: White matter changes in auditory hallucinations. Archives of General Psychiatry, 61(7), 658668. doi: 10.1001/archpsyc.61.7.658CrossRefGoogle ScholarPubMed
International Schizophrenia, C., Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O'Donovan, M. C., … Sklar, P. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(7256), 748752. doi: 10.1038/nature08185Google ScholarPubMed
Jun, G., Wing, M. K., Abecasis, G. R., & Kang, H. M. (2015). An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Research, 25(6), 918925. doi: 10.1101/gr.176552.114CrossRefGoogle ScholarPubMed
Karlsgodt, K. H., Jacobson, S. C., Seal, M., & Fusar-Poli, P. (2012). The relationship of developmental changes in white matter to the onset of psychosis. Current Pharmaceutical Design, 18(4), 422433. doi: 10.2174/138161212799316073CrossRefGoogle Scholar
Kelly, S., Jahanshad, N., Zalesky, A., Kochunov, P., Agartz, I., Alloza, C., … Donohoe, G. (2018). Widespread white matter microstructural differences in schizophrenia across 4322 individuals: Results from the ENIGMA schizophrenia DTI working group. Molecular Psychiatry, 23(5), 12611269. doi: 10.1038/mp.2017.170CrossRefGoogle ScholarPubMed
Kochunov, P., Coyle, T. R., Rowland, L. M., Jahanshad, N., Thompson, P. M., Kelly, S., … Hong, L. E. (2017). Association of white matter with core cognitive deficits in patients with schizophrenia. JAMA Psychiatry, 74(9), 958966. doi: 10.1001/jamapsychiatry.2017.2228CrossRefGoogle ScholarPubMed
Kochunov, P., Williamson, D. E., Lancaster, J., Fox, P., Cornell, J., Blangero, J., & Glahn, D. C. (2012). Fractional anisotropy of water diffusion in cerebral white matter across the lifespan. Neurobiology of Aging, 33(1), 920. doi: 10.1016/j.neurobiolaging.2010.01.014CrossRefGoogle ScholarPubMed
Konrad, A., & Winterer, G. (2008). Disturbed structural connectivity in schizophrenia primary factor in pathology or epiphenomenon? Schizophrenia Bulletin, 34(1), 7292. doi: 10.1093/schbul/sbm034CrossRefGoogle ScholarPubMed
Kuroki, N., Shenton, M. E., Salisbury, D. F., Hirayasu, Y., Onitsuka, T., Ersner-Hershfield, H., … McCarley, R. W. (2006). Middle and inferior temporal gyrus gray matter volume abnormalities in first-episode schizophrenia: An MRI study. The American Journal of Psychiatry, 163(12), 21032110. doi: 10.1176/ajp.2006.163.12.2103CrossRefGoogle Scholar
Lawrie, S. M., Buechel, C., Whalley, H. C., Frith, C. D., Friston, K. J., & Johnstone, E. C. (2002). Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biological Psychiatry, 51(12), 10081011. doi: 10.1016/s0006-3223(02)01316-1CrossRefGoogle ScholarPubMed
Li, Z., Chen, J., Yu, H., He, L., Xu, Y., Zhang, D., … Shi, Y. (2017). Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nature Genetics, 49(11), 15761583. doi: 10.1038/ng.3973CrossRefGoogle Scholar
Liu, S., Li, A., Liu, Y., Yan, H., Wang, M., Sun, Y., … Liu, B. (2020). Polygenic effects of schizophrenia on hippocampal grey matter volume and hippocampus-medial prefrontal cortex functional connectivity. The British Journal of Psychiatry, 216(5), 267274. doi: 10.1192/bjp.2019.127CrossRefGoogle ScholarPubMed
Malla, A. K., Bodnar, M., Joober, R., & Lepage, M. (2011). Duration of untreated psychosis is associated with orbital-frontal grey matter volume reductions in first episode psychosis. Schizophrenia Research, 125(1), 1320. doi: 10.1016/j.schres.2010.09.021CrossRefGoogle ScholarPubMed
Mori, S., Wakana, S., Nagae-Poetscher, L. M., & van Zijl, P. C. M. (2006). MRI atlas of human white matter, edited by S. Mori, S. Wakana, L.M. Nagae-Poetscher and P.C.M. Van Zijl. Elsevier, Oxford (for Europe, Middle East and Africa) and Elsevier, St Louis, MO (for USA/ Canada), In AJNR American journal of neuroradiology (Vol. 27, pp. 13841385). Amsterdam: Copyright © American Society of Neuroradiology.Google Scholar
Mulert, C., Kirsch, V., Whitford, T. J., Alvarado, J., Pelavin, P., McCarley, R. W., … Shenton, M. E. (2012). Hearing voices: A role of interhemispheric auditory connectivity? The World Journal of Biological Psychiatry, 13(2), 153158. doi: 10.3109/15622975.2011.570789CrossRefGoogle ScholarPubMed
Murray, R. M., Bhavsar, V., Tripoli, G., & Howes, O. (2017). 30 Years on: How the neurodevelopmental hypothesis of schizophrenia morphed into the developmental risk factor model of psychosis. Schizophrenia Bulletin, 43(6), 11901196. doi: 10.1093/schbul/sbx121CrossRefGoogle ScholarPubMed
Mwansisya, T. E., Hu, A., Li, Y., Chen, X., Wu, G., Huang, X., … Liu, Z. (2017). Task and resting-state fMRI studies in first-episode schizophrenia: A systematic review. Schizophrenia Research, 189, 918. doi: 10.1016/j.schres.2017.02.026CrossRefGoogle ScholarPubMed
Neilson, E., Bois, C., Clarke, T. K., Hall, L., Johnstone, E. C., Owens, D. G. C., … Lawrie, S. M. (2018). Polygenic risk for schizophrenia, transition and cortical gyrification: A high-risk study. Psychological Medicine, 48(9), 15321539. doi: 10.1017/S0033291717003087CrossRefGoogle ScholarPubMed
Orlov, N. D., Giampietro, V., O'Daly, O., Lam, S. L., Barker, G. J., Rubia, K., … Allen, P. (2018). Real-time fMRI neurofeedback to down-regulate superior temporal gyrus activity in patients with schizophrenia and auditory hallucinations: A proof-of-concept study. Translational Psychiatry, 8(1), 46. doi: 10.1038/s41398-017-0067-5CrossRefGoogle ScholarPubMed
Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P., & Mechelli, A. (2011). Dysconnectivity in schizophrenia: Where are we now? Neuroscience and Biobehavioral Reviews, 35(5), 11101124. doi: 10.1016/j.neubiorev.2010.11.004CrossRefGoogle ScholarPubMed
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40(3), 879891. doi: 10.3758/brm.40.3.879CrossRefGoogle ScholarPubMed
Rapoport, J. L., Giedd, J. N., & Gogtay, N. (2012). Neurodevelopmental model of schizophrenia: Update 2012. Molecular Psychiatry, 17(12), 12281238. doi: 10.1038/mp.2012.23CrossRefGoogle ScholarPubMed
Romme, I. A., de Reus, M. A., Ophoff, R. A., Kahn, R. S., & van den Heuvel, M. P. (2017). Connectome disconnectivity and cortical gene expression in patients with schizophrenia. Biological Psychiatry, 81(6), 495502. doi: 10.1016/j.biopsych.2016.07.012CrossRefGoogle ScholarPubMed
Schizophrenia Working Group of the Psychiatric Genomics, C. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421427. doi: 10.1038/nature13595CrossRefGoogle Scholar
Shah, C., Zhang, W., Xiao, Y., Yao, L., Zhao, Y., Gao, X., … Lui, S. (2017). Common pattern of gray-matter abnormalities in drug-naive and medicated first-episode schizophrenia: A multimodal meta-analysis. Psychological Medicine, 47(3), 401413. doi: 10.1017/s0033291716002683CrossRefGoogle ScholarPubMed
Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., … Behrens, T. E. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 14871505. doi: 10.1016/j.neuroimage.2006.02.024CrossRefGoogle ScholarPubMed
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., … Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(Suppl. 1), S208S219. doi: 10.1016/j.neuroimage.2004.07.051CrossRefGoogle ScholarPubMed
Strike, L. T., Couvy-Duchesne, B., Hansell, N. K., Cuellar-Partida, G., Medland, S. E., & Wright, M. J. (2015). Genetics and brain morphology. Neuropsychology Review, 25(1), 6396. doi: 10.1007/s11065-015-9281-1CrossRefGoogle ScholarPubMed
Sullivan, P. F. (2005). The genetics of schizophrenia. PLoS Medicine, 2(7), e212. doi: 10.1371/journal.pmed.0020212CrossRefGoogle ScholarPubMed
Tanaka-Arakawa, M. M., Matsui, M., Tanaka, C., Uematsu, A., Uda, S., Miura, K., … Noguchi, K. (2015). Developmental changes in the corpus callosum from infancy to early adulthood: A structural magnetic resonance imaging study. PLoS One, 10(3), e0118760. doi: 10.1371/journal.pone.0118760CrossRefGoogle ScholarPubMed
Tang, Y., Pasternak, O., Kubicki, M., Rathi, Y., Zhang, T., Wang, J., … Seidman, L. J. (2019). Altered cellular white matter but not extracellular free water on diffusion MRI in individuals at clinical high risk for psychosis. The American Journal of Psychiatry, 176(10), 820828. doi: 10.1176/appi.ajp.2019.18091044CrossRefGoogle Scholar
Terwisscha van Scheltinga, A. F., Bakker, S. C., van Haren, N. E., Derks, E. M., Buizer-Voskamp, J. E., & Boos, H. B., … Psychiatric Genome-wide Association Study, C. (2013). Genetic schizophrenia risk variants jointly modulate total brain and white matter volume. Biological Psychiatry, 73(6), 525531. doi: 10.1016/j.biopsych.2012.08.017CrossRefGoogle ScholarPubMed
Voineskos, A. N., Felsky, D., Wheeler, A. L., Rotenberg, D. J., Levesque, M., Patel, S., … Malhotra, A. K. (2016). Limited evidence for association of genome-wide schizophrenia risk variants on cortical neuroimaging phenotypes. Schizophrenia Bulletin, 42(4), 10271036. doi: 10.1093/schbul/sbv180CrossRefGoogle ScholarPubMed
Vuoksimaa, E., Panizzon, M. S., Hagler, D. J. Jr., Hatton, S. N., Fennema-Notestine, C., Rinker, D., … Kremen, W. S. (2017). Heritability of white matter microstructure in late middle age: A twin study of tract-based fractional anisotropy and absolute diffusivity indices. Human Brain Mapping, 38(4), 20262036. doi: 10.1002/hbm.23502CrossRefGoogle ScholarPubMed
Wakana, S., Jiang, H., Nagae-Poetscher, L. M., van Zijl, P. C., & Mori, S. (2004). Fiber tract-based atlas of human white matter anatomy. Radiology, 230(1), 7787. doi: 10.1148/radiol.2301021640CrossRefGoogle ScholarPubMed
Walton, E., Turner, J., Gollub, R. L., Manoach, D. S., Yendiki, A., Ho, B. C., … Ehrlich, S. (2013). Cumulative genetic risk and prefrontal activity in patients with schizophrenia. Schizophrenia Bulletin, 39(3), 703711. doi: 10.1093/schbul/sbr190CrossRefGoogle ScholarPubMed
Wang, S. H., Hsiao, P. C., Yeh, L. L., Liu, C. M., Liu, C. C., Hwang, T. J., … Chen, W. J. (2018). Polygenic risk for schizophrenia and neurocognitive performance in patients with schizophrenia. Genes, Brain, and Behavior, 17(1), 4955. doi: 10.1111/gbb.12401CrossRefGoogle ScholarPubMed
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125141. doi: 10.1089/brain.2012.0073CrossRefGoogle ScholarPubMed
Zhang, T., Xu, L., Chen, Y., Wei, Y., Tang, X., Hu, Y., … Wang, J. (2020). Conversion to psychosis in adolescents and adults: Similar proportions, different predictors. Psychological Medicine, 51(12), 20032011. doi: 10.1017/S0033291720000756.CrossRefGoogle Scholar
Supplementary material: File

Su et al. supplementary material

Su et al. supplementary material

Download Su et al. supplementary material(File)
File 187 KB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Effects of polygenic risk of schizophrenia on interhemispheric callosal white matter integrity and frontotemporal functional connectivity in first-episode schizophrenia
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Effects of polygenic risk of schizophrenia on interhemispheric callosal white matter integrity and frontotemporal functional connectivity in first-episode schizophrenia
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Effects of polygenic risk of schizophrenia on interhemispheric callosal white matter integrity and frontotemporal functional connectivity in first-episode schizophrenia
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *