Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-plzwj Total loading time: 0.559 Render date: 2022-05-16T13:25:59.696Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Altered brain structural and functional connectivity in schizotypy

Published online by Cambridge University Press:  17 July 2020

Yong-ming Wang
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China Sino-Danish College, University of Chinese Academy of Sciences, Beijing100190, PR China Sino-Danish Center for Education and Research, Beijing100190, PR China Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
Xin-lu Cai
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China Sino-Danish College, University of Chinese Academy of Sciences, Beijing100190, PR China Sino-Danish Center for Education and Research, Beijing100190, PR China Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
Rui-ting Zhang
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
Yi-jing Zhang
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
Han-yu Zhou
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
Yi Wang
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
Ya Wang
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
Jia Huang
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
Yan-yu Wang
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China Department of Psychology, Weifang Medical University, Shandong Province, PR China
Eric F. C. Cheung
Affiliation:
Castle Peak Hospital, Hong Kong Special Administrative Region, PR China
Raymond C. K. Chan*
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing100101, PR China Sino-Danish College, University of Chinese Academy of Sciences, Beijing100190, PR China Sino-Danish Center for Education and Research, Beijing100190, PR China Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
*
Author for correspondence: Raymond C. K. Chan, E-mail: rckchan@psych.ac.cn

Abstract

Background

Schizotypy refers to schizophrenia-like traits below the clinical threshold in the general population. The pathological development of schizophrenia has been postulated to evolve from the initial coexistence of ‘brain disconnection’ and ‘brain connectivity compensation’ to ‘brain connectivity decompensation’.

Methods

In this study, we examined the brain connectivity changes associated with schizotypy by combining brain white matter structural connectivity, static and dynamic functional connectivity analysis of diffusion tensor imaging data and resting-state functional magnetic resonance imaging data. A total of 87 participants with a high level of schizotypal traits and 122 control participants completed the experiment. Group differences in whole-brain white matter structural connectivity probability, static mean functional connectivity strength, dynamic functional connectivity variability and stability among 264 brain sub-regions of interests were investigated.

Results

We found that individuals with high schizotypy exhibited increased structural connectivity probability within the task control network and within the default mode network; increased variability and decreased stability of functional connectivity within the default mode network and between the auditory network and the subcortical network; and decreased static mean functional connectivity strength mainly associated with the sensorimotor network, the default mode network and the task control network.

Conclusions

These findings highlight the specific changes in brain connectivity associated with schizotypy and indicate that both decompensatory and compensatory changes in structural connectivity within the default mode network and the task control network in the context of whole-brain functional disconnection may be an important neurobiological correlate in individuals with high schizotypy.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abi-Saab, W. M., D'Souza, D. C., Moghaddam, B., & Krystal, J. H. (1998). The NMDA antagonist model for schizophrenia: Promise and pitfalls. Pharmacopsychiatry, 31, 104109.CrossRefGoogle ScholarPubMed
Abram, S. V., Wisner, K. M., Fox, J. M., Barch, D. M., Wang, L., Csernansky, J. G., … Smith, M. J. (2017). Fronto-temporal connectivity predicts cognitive empathy deficits and experiential negative symptoms in schizophrenia. Human Brain Mapping, 38, 11111124.CrossRefGoogle Scholar
Andreasen, N. C., Paradiso, S., & O'leary, D. S. (1998). “Cognitive dysmetria” as an integrative theory of schizophrenia: A dysfunction in cortical-subcortical-cerebellar circuitry? Schizophrenia Bulletin, 24, 203218.CrossRefGoogle ScholarPubMed
Barber, A. D., Lindquist, M. A., DeRosse, P., & Karlsgodt, K. H. (2018). Dynamic functional connectivity states reflecting psychotic-like experiences. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3, 443453.Google ScholarPubMed
Barrantes-Vidal, N., Grant, P., & Kwapil, T. R. (2015). The role of schizotypy in the study of the etiology of schizophrenia spectrum disorders. Schizophrenia Bulletin, 41, S408S416.CrossRefGoogle Scholar
Behrens, T. E., Berg, H. J., Jbabdi, S., Rushworth, M., & Woolrich, M. (2007). Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage, 34, 144155.CrossRefGoogle ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57, 289300.Google Scholar
Cai, W., Ryali, S., Chen, T., Li, C. S. R., & Menon, V. (2014). Dissociable roles of right inferior frontal cortex and anterior insula in inhibitory control: Evidence from intrinsic and task-related functional parcellation, connectivity, and response profile analyses across multiple datasets. The Journal of Neuroscience, 34, 1465214667.CrossRefGoogle ScholarPubMed
Carter, A. R., Astafiev, S. V., Lang, C. E., Connor, L. T., Rengachary, J., Strube, M. J., … Corbetta, M. (2010). Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Annals of Neurology, 67, 365375.Google ScholarPubMed
Chan, R. C., Yan, C., Qing, Y. H., Wang, Y., Wang, Y. N., Ma, Z., … Yu, X. (2011). Subjective awareness of everyday dysexecutive behavior precedes ‘objective’ executive problems in schizotypy: A replication and extension study. Psychiatry Research, 185, 340346.CrossRefGoogle ScholarPubMed
Chen, W. J., Hsiao, C. K., & Lin, C. C. (1997). Schizotypy in community samples: The three-factor structure and correlation with sustained attention. Journal of Abnormal Psychology, 106, 649654.CrossRefGoogle ScholarPubMed
Cho, K. I. K., Shenton, M. E., Kubicki, M., Jung, W. H., Lee, T. Y., Yun, J. Y., … Kwon, J. S. (2015). Altered thalamo-cortical white matter connectivity: Probabilistic tractography study in clinical-high risk for psychosis and first-episode psychosis. Schizophrenia Bulletin, 42, 723731.CrossRefGoogle ScholarPubMed
Choe, A. S., Nebel, M. B., Barber, A. D., Cohen, J. R., Xu, Y., Pekar, J. J., … Lindquist, M. A. (2017). Comparing test-retest reliability of dynamic functional connectivity methods. Neuroimage, 158, 155175.CrossRefGoogle ScholarPubMed
Crone, J. S., Schurz, M., Höller, Y., Bergmann, J., Monti, M., Schmid, E., … Kronbichler, M. (2015). Impaired consciousness is linked to changes in effective connectivity of the posterior cingulate cortex within the default mode network. Neuroimage, 110, 101109.CrossRefGoogle ScholarPubMed
Cui, L. B., Liu, L., Guo, F., Chen, Y. C., Chen, G., Xi, M., … Wang, H. N. (2017). Disturbed brain activity in resting-state networks of patients with first-episode schizophrenia with auditory verbal hallucinations: A cross-sectional functional MR imaging study. Radiology, 283, 810819.CrossRefGoogle ScholarPubMed
Cui, Z., Zhong, S., Xu, P., He, Y., & Gong, G. (2013). PANDA: A pipeline toolbox for analyzing brain diffusion images. Frontiers in Human Neuroscience, 7, 42.CrossRefGoogle ScholarPubMed
Damaraju, E., Allen, E. A., Belger, A., Ford, J. M., McEwen, S., Mathalon, D. H., … Calhoun, V. D. (2014). Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage: Clinical, 5, 298308.CrossRefGoogle Scholar
Ellison-Wright, I., & Bullmore, E. (2009). Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Research, 108, 310.CrossRefGoogle Scholar
Ettinger, U., Meyhöfer, I., Steffens, M., Wagner, M., & Koutsouleris, N. (2014). Genetics, cognition, and neurobiology of schizotypal personality: A review of the overlap with schizophrenia. Frontiers in Psychiatry, 5, 18.CrossRefGoogle ScholarPubMed
Fang, P., Zeng, L. L., Shen, H., Wang, L., Li, B., Liu, L., & Hu, D. (2012). Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging. PLoS ONE, 7, e45972.CrossRefGoogle ScholarPubMed
Friston, K., Brown, H., Siemerkus, J., & Stephan, K. (2016). The dysconnection hypothesis. Schizophrenia Research, 176, 8394.CrossRefGoogle ScholarPubMed
Friston, K. J., & Frith, C. D. (1995). Schizophrenia: A disconnection syndrome. Clinical Neuroscience, 3, 8997.Google ScholarPubMed
Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-related effects in fMRI time-series. Magnetic Resonance in Medicine, 35, 346355.CrossRefGoogle ScholarPubMed
Gong, Y. (1992). Manual of Wechsler adult intelligence scale-Chinese version. Changsha: Chinese Map.Google Scholar
Grant, P. (2015). Is schizotypy per se a suitable endophenotype of schizophrenia? Do not forget to distinguish positive from negative facets. Frontiers in Psychiatry, 6, 143.CrossRefGoogle Scholar
Grant, P., Green, M. J., & Mason, O. J. (2018). Models of schizotypy: The importance of conceptual clarity. Schizophrenia Bulletin, 44, S556S563.CrossRefGoogle ScholarPubMed
Hahn, C. G., Wang, H. Y., Cho, D. S., Talbot, K., Gur, R. E., Berrettini, W. H., … Arnold, S. E. (2006). Altered neuregulin 1-erbB4 signaling contributes to NMDA receptor hypofunction in schizophrenia. Nature Medicine, 12, 824828.CrossRefGoogle Scholar
Hare, S. M., Ford, J. M., Mathalon, D. H., Damaraju, E., Bustillo, J., Belger, A., … Turner, J. A. (2018). Salience-default mode functional network connectivity linked to positive and negative symptoms of schizophrenia. Schizophrenia Bulletin, 45, 892901.CrossRefGoogle Scholar
Kraguljac, N. V., White, D. M., Hadley, N., Hadley, J. A., ver Hoef, L., Davis, E., & Lahti, A. C. (2016). Aberrant hippocampal connectivity in unmedicated patients with schizophrenia and effects of antipsychotic medication: A longitudinal resting state functional MRI study. Schizophrenia Bulletin, 42, 10461055.CrossRefGoogle ScholarPubMed
Kwapil, T. R., & Barrantes-Vidal, N. (2014). Schizotypy: Looking back and moving forward. Schizophrenia Bulletin, 41, S366S373.CrossRefGoogle ScholarPubMed
Lagioia, A., Van De Ville, D., Debbané, M., Lazeyras, F., & Eliez, S. (2010). Adolescent resting state networks and their associations with schizotypal trait expression. Frontiers in Systems Neuroscience, 4, 35.Google ScholarPubMed
Laruelle, M., Frankle, W. G., Narendran, R., Kegeles, L. S., & Abi-Dargham, A. (2005). Mechanism of action of antipsychotic drugs: From dopamine D(2) receptor antagonism to glutamate NMDA facilitation. Clinical Therapeutics, 27, S16S24.CrossRefGoogle ScholarPubMed
Lau, C. G., & Zukin, R. S. (2007). NMDA Receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nature Reviews Neuroscience, 8, 413426.CrossRefGoogle ScholarPubMed
Lenzenweger, M. F. (2006). Schizotypy: An organizing framework for schizophrenia research. Current Directions in Psychological Science, 15, 162166.CrossRefGoogle Scholar
Lenzenweger, M. F. (2011). Schizotypy and schizophrenia: The view from experimental psychopathology. New York: Guilford Press.Google Scholar
Lenzenweger, M. F. (2015). Thinking clearly about schizotypy: Hewing to the schizophrenia liability core, considering interesting tangents, and avoiding conceptual quicksand. Schizophrenia Bulletin, 41, S483S491.CrossRefGoogle Scholar
Lindner, A., Thier, P., Kircher, T. T., Haarmeier, T., & Leube, D. T. (2005). Disorders of agency in schizophrenia correlate with an inability to compensate for the sensory consequences of actions. Current Biology, 15, 11191124.CrossRefGoogle ScholarPubMed
Lindquist, M. A., Xu, Y., Nebel, M. B., & Caffo, B. S. (2014). Evaluating dynamic bivariate correlations in resting-state fMRI: A comparison study and a new approach. Neuroimage, 101, 531546.CrossRefGoogle ScholarPubMed
Liu, J., Liao, X., Xia, M., & He, Y. (2018). Chronnectome fingerprinting: Identifying individuals and predicting higher cognitive functions using dynamic brain connectivity patterns. Human Brain Mapping, 39, 902915.CrossRefGoogle ScholarPubMed
Loas, G., Monestes, J. L., Ingelaere, A., Noisette, C., & Herbener, E. S. (2009). Stability and relationships between trait or state anhedonia and schizophrenic symptoms in schizophrenia: A 13-year follow-up study. Psychiatry Research, 166, 132140.CrossRefGoogle ScholarPubMed
Meehl, P. E. (1962). Schizotaxia, schizotypy, schizophrenia. American Psychologist, 17, 827838.CrossRefGoogle Scholar
Miuller, N., & Schwarz, M. J. (2007). The immunological basis of glutamatergic disturbance in schizophrenia: Towards an integrated view. Journal of Neural Transplantation & Plasticity, 72, 269280.Google Scholar
Mohr, C., & Claridge, G. (2015). Schizotypy-do not worry, it is not all worrisome. Schizophrenia Bulletin, 41, S436S443.CrossRefGoogle Scholar
Moore, J. W., & Pope, A. (2014). The intentionality bias and schizotypy. The Quarterly Journal of Experimental Psychology, 67, 22182224.CrossRefGoogle ScholarPubMed
Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., … Mazziotta, J. (2008). Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage, 40, 570582.CrossRefGoogle Scholar
Mothersill, O., Kelly, S., Rose, E. J., & Donohoe, G. (2012). The effects of psychosis risk variants on brain connectivity: A review. Frontiers in Psychiatry, 3, 18.CrossRefGoogle ScholarPubMed
Nelson, M. T., Seal, M. L., Phillips, L. J., Merritt, A. H., Wilson, R., & Pantelis, C. (2011). An investigation of the relationship between cortical connectivity and schizotypy in the general population. The Journal of Nervous and Mental Disease, 199, 348353.CrossRefGoogle ScholarPubMed
Nomi, J. S., Vij, S. G., Dajani, D. R., Steimke, R., Damaraju, E., Rachakonda, S., … Uddin, L. Q. (2017). Chronnectomic patterns and neural flexibility underlie executive function. Neuroimage, 147, 861871.CrossRefGoogle ScholarPubMed
Patel, A. X., Kundu, P., Rubinov, M., Jones, P. S., Vértes, P. E., Ersche, K. D., … Bullmore, E. T. (2014). A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series. Neuroimage, 95, 287304.CrossRefGoogle ScholarPubMed
Pawlak, V., & Kerr, J. N. (2008). Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. Journal of Neuroscience, 28, 24352446.CrossRefGoogle ScholarPubMed
Pettersson-Yeo, W., Allen, P., Benetti, S., McGuire, P., & Mechelli, A. (2011). Dysconnectivity in schizophrenia: Where are we now? Neuroscience & Biobehavioral Reviews, 35, 11101124.CrossRefGoogle ScholarPubMed
Polner, B., Faiola, E., Urquijo, M. F., Meyhöfer, I., Steffens, M., Rónai, L., … Ettinger, U. (2019). The network structure of schizotypy in the general population. European Archives of Psychiatry and Clinical Neuroscience, 111.Google Scholar
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59, 21422154.CrossRefGoogle ScholarPubMed
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72, 665678.CrossRefGoogle ScholarPubMed
Raine, A. (1991). The SPQ: A scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophrenia Bulletin, 17, 555564.CrossRefGoogle ScholarPubMed
Raine, A., Reynolds, C., Lencz, T., Scerbo, A., Triphon, N., & Kim, D. (1994). Cognitive-perceptual, interpersonal, and disorganized features of schizotypal personality. Schizophrenia Bulletin, 20, 191201.CrossRefGoogle ScholarPubMed
Rolland, B., Amad, A., Poulet, E., Bordet, R., Vignaud, A., Bation, R., … Jardri, R. (2015). Resting-state functional connectivity of the nucleus accumbens in auditory and visual hallucinations in schizophrenia. Schizophrenia Bulletin, 41, 291299.CrossRefGoogle Scholar
Sarig, S., Dar, R., & Liberman, N. (2012). Obsessive-compulsive tendencies are related to indecisiveness and reliance on feedback in a neutral color judgment task. Journal of Behavior Therapy and Experimental Psychiatry, 43, 692697.CrossRefGoogle Scholar
Seghier, M. L. (2013). The angular gyrus: Multiple functions and multiple subdivisions. Neuroscientist, 19, 4361.CrossRefGoogle ScholarPubMed
Shan, H. D., Zhang, R. T., Jiang, S. Y., Wang, Y. M., Liu, Y. F., Cheung, E. F., & Chan, R. C. (2020). Schizotypal and obsessive-compulsive traits: Co-occurrence rate and relationship with executive function, emotion experience and emotion expressivity in college students. Psych Journal. doi:10.1002/pchj.372.CrossRefGoogle ScholarPubMed
Shi, L. J., Liu, W. H., Shi, H. S., Yan, C., Wang, Y., Wang, Y., … Chan, R. C. (2017). Co-occurrence of autistic and schizotypal traits and its association with emotional and psychosocial function in Chinese college students. Psychiatry Research, 248, 6470.CrossRefGoogle ScholarPubMed
Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., … Behrens, T. E. J. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage, 31, 14871505.CrossRefGoogle ScholarPubMed
Stephan, K. E., Friston, K. J., & Frith, C. D. (2009). Dysconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin, 35, 509527.CrossRefGoogle ScholarPubMed
Timmler, S., & Simons, M. (2019). Grey matter myelination. Glia, 67, 20632070.CrossRefGoogle ScholarPubMed
Tseng, K. Y., & O'Donnell, P. (2004). Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. Journal of Neuroscience, 24, 51315139.CrossRefGoogle ScholarPubMed
Uddin, L. Q., Nomi, J. S., Hebert-Seropian, B., Ghaziri, J., & Boucher, O. (2017). Structure and function of the human insula. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 34, 300306.CrossRefGoogle ScholarPubMed
Verhoeven, K. J., Simonsen, K. L., & McIntyre, L. M. J. O. (2005). Implementing false discovery rate control: Increasing your power. Oikos, 108, 643647.CrossRefGoogle Scholar
Wang, Y., Ettinger, U., Meindl, T., & Chan, R. C. (2018a). Association of schizotypy with striatocortical functional connectivity and its asymmetry in healthy adults. Human Brain Mapping, 39, 288299.CrossRefGoogle Scholar
Wang, K., Wang, Y., Yan, C., Wang, Y. N., Cheung, E. F., & Chan, R. C. (2013). Semantic processing impairment in individuals with schizotypal personality disorder features: A preliminary event-related potential study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 40, 93102.CrossRefGoogle ScholarPubMed
Wang, Y., Yan, C., Yin, D. Z., Fan, M. X., Cheung, E. F., Pantelis, C., & Chan, R. C. (2014). Neurobiological changes of schizotypy: Evidence from both volume-based morphometric analysis and resting-state functional connectivity. Schizophrenia Bullentin, 41, S444S454.CrossRefGoogle ScholarPubMed
Wang, Y. M., Yang, Z. Y., Cai, X. L., Zhou, H. Y., Zhang, R. T., Yang, H. X., … Chan, R. C. (2020a). Identifying schizo-obsessive comorbidity by tract-based spatial statistics and probabilistic tractography. Schizophrenia Bulletin, 46, 442453.Google Scholar
Wang, Y. M., Zhang, Y. J., Cai, X. L., Yang, H. X., Cheung, E. F., & Chan, R. C. (2020b). Altered grey matter volume and white matter integrity in individuals with high schizo-obsessive traits, high schizotypal traits and obsessive-compulsive symptoms. Asian Journal of Psychiatry, 52, 102096.CrossRefGoogle Scholar
Wang, Y. M., Zou, L. Q., Xie, W. L., Yang, Z. Y., Cheung, E. F., Sørensen, T. A., … Chan, R. C. (2018b). Altered functional connectivity of the default mode network in patients with schizo-obsessive comorbidity; A comparison between schizophrenia and obsessive-compulsive disorder. Schizophrenia Bulletin, 45, 199210.CrossRefGoogle Scholar
Wei, J., Lin, C. H., Wu, H., Jin, Y., Lee, Y. H., & Wu, J. Y. (2006). Activity-dependent cleavage of brain glutamic acid decarboxylase 65 by calpain. Journal of Neurochemistry, 98, 16881695.CrossRefGoogle ScholarPubMed
Wolf, M. E. (2003). Effects of psychomotor stimulants on glutamate receptor expression. Methods in Molecular Medicine, 79, 1331.Google ScholarPubMed
Wolf, M. E., Mangiavacchi, S., & Sun, X. (2003). Mechanisms by which dopamine receptors may influence synaptic plasticity. Annals of the New York Academy of Sciences, 1003, 241249.CrossRefGoogle ScholarPubMed
Wong, K. K., & Raine, A. (2018). Developmental aspects of schizotypy and suspiciousness: A review. Current Behavioral Neuroscience Reports, 5, 94101.CrossRefGoogle ScholarPubMed
Woodward, N. D., Rogers, B., & Heckers, S. (2011). Functional resting-state networks are differentially affected in schizophrenia. Schizophrenia Research, 130, 8693.CrossRefGoogle Scholar
Xia, M., Wang, J., & He, Y. (2013). Brainnet viewer: A network visualization tool for human brain connectomics. PLoS ONE, 8, e68910.CrossRefGoogle ScholarPubMed
Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., … Milham, M. P. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76, 183201.CrossRefGoogle ScholarPubMed
Yan, C. G., & Zang, Y. F. (2010). DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.Google Scholar
Yin, Y., Jin, C., Hu, X., Duan, L., Li, Z., Song, M., … Li, L. J. (2011). Altered resting-state functional connectivity of thalamus in earthquake-induced posttraumatic stress disorder: A functional magnetic resonance imaging study. Brain Research, 1411, 98107.CrossRefGoogle ScholarPubMed
Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: Identifying differences in brain networks. Neuroimage, 53, 11971207.CrossRefGoogle ScholarPubMed
Zhu, Y. K., Tang, Y. X., Zhang, T. H., Li, H., Tang, Y. Y., Li, C. B., … Wang, J. J. (2017). Reduced functional connectivity between bilateral precuneus and contralateral parahippocampus in schizotypal personality disorder. BMC Psychiatry, 17, 48.CrossRefGoogle ScholarPubMed
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Altered brain structural and functional connectivity in schizotypy
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Altered brain structural and functional connectivity in schizotypy
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Altered brain structural and functional connectivity in schizotypy
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *