Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-10T20:41:43.989Z Has data issue: false hasContentIssue false

XIV.—Quantitative Characters of the Growth and Development of a Paurometabolous Insect, Dixippus (Carausius) morosus Br. et Redt. I. The Loss of Water in relation to Ecdysis

Published online by Cambridge University Press:  11 June 2012

Beverley N. Smallman
Affiliation:
Department of Zoology, McGill University.
Get access

Extract

Water economy is a necessary complement of terrestrial life, for the limits of life upon land are, in part, determined by the organism's ability to utilize and conserve the water of its environment. For small organisms of terrestrial habit, the large surface-to-mass ratio and consequent surface evaporation makes the problem of water conservation particularly acute. It is therefore remarkable that the insects constitute the most numerous and varied group of terrestrial animals; and it follows that their success is, in large part, due to their ability to utilize and conserve water in widely divergent environments.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1942

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References to Literature

Babcock, S. M., 1912. “Metabolic water: its production and rôle in vital phenomena,” 29th Ann. Rep..Agric. Exper. Stn. Univ. Wisconsin.Google Scholar
Bodine, J. H., 1921. “Factors influencing the water content and the rate of metabolism of certain Orthoptera,” Journ. Exp. Biol., vol. xxxii, pp. 137164.Google Scholar
Buddenbrock, W. v., and Rhor, G. v., 1922. “Die Atmung von Dixippus morosus,” Zeits. f. allgem. Physiol., vol. xx, pp. 111160.Google Scholar
Butler, C. G., and Innes, J. M., 1936. “A comparison of the rate of metabolic activity in the solitary and migratory phases of Locusta migratoria,” Proc. Roy. Soc., B, vol. cxix, pp. 296304.Google Scholar
Buxton, P. A., 1930. “Evaporation from the meal-worm (Tenebrio: Coleoptera) and atmospheric humidity,” Proc. Roy. Soc., B, vol. cvi, pp. 560577.Google Scholar
Buxton, P. A., 1932. “Terrestrial insects and the humidity of the environment,” Biol. Rev., vol. vii, pp. 275320.CrossRefGoogle Scholar
Davis, J. G., and Slater, W. K., 1926. “The aerobic and anaerobic metabolism of the common cockroach (Periplaneta orientalis), I,” Biochem. Journ., vol. xx, pp. 11671172.CrossRefGoogle Scholar
Fraenkel, G., and Herford, G. V. B., 1938. “The respiration of insects through the skin,” Journ. Exp. Biol., vol. xv, pp. 266279.Google Scholar
Gunn, D. L., 1933. “The temperature and humidity relations of the cockroach (Blatta orientalis),” Journ. Exp. Biol., vol. x, pp. 274285.Google Scholar
Gunn, D. L., 1935. “A comparison of temperature preference, and rates of desiccation and respiration of Periplaneta americana, Blatta orientalis, and Blatella germanica,” Journ. Exp. Biol., vol. xii, pp. 185190.Google Scholar
Hazelhoff, E. H., 1927. (Quoted by Jordan, H., 1927.)Google Scholar
Jordan, H., 1927. “Die Regulierung der Atmung bei Insekten und Spinnen,” Zeits. vergl. Physiol., vol. v, pp. 179190.Google Scholar
Koidsumi, K., 1934. “Experimentelle Studien über die Transpiration und den Wärmehaushalt bei Insekten,” Mem. Fac. Sci. Agric. Taihoku Imp. Univ., vol. xii, pp. 1179.Google Scholar
Kühnelt, W., 1928. “Uber den Bau des Insektenskelettes,” Zool. Jahrb. (Anat.), vol. 1, pp. 219278.Google Scholar
Maluf, N. S. R., 1939. “The blood of arthropods,” Quart. Rev. Biol., vol. xiv, pp. 149191.Google Scholar
Mellanby, K., 1932. “Effects of temperature and humidity on the metabolism of the fasting bed-bug (Cimex lectularis),” Parasitology, vol. xxiv, pp. 419428.Google Scholar
Mellanby, K., 1934. “The site of loss of water from insects,” Proc. Roy. Soc., B, vol. cxvi, pp. 139149.Google Scholar
Mellanby, K., 1939. “The functions of insect blood,” Biol. Rev., vol. xiv, pp. 243260.CrossRefGoogle Scholar
Ramsay, J. A., 1935. “The evaporation of water from the cockroach,” Journ. Exp. Biol., vol. xii, pp. 373383.Google Scholar
Slater, W. K., 1927. “The aerobic and anaerobic metabolism of the common cockroach (Periplaneta orientalis), II,” Biochem. Journ., vol. xxi, pp. 198203.Google Scholar
Teissier, G., 1931. “La croissance des insectes,” Trav. Stat. Biol. Roscoff, vol. ix, pp. 29238.Google Scholar
Wigglesworth, V. B., and Gillett, J. D., 1936. “The loss of water during ecdysis in Rhodnius prolixus Stal.,” Proc. Roy. Ent. Soc., vol. xi, pp. 104107.Google Scholar
Wigglesworth, V. B., 1932. “On the function of the so-called ‘rectal glands’ of insects,” Quart. Journ. Micr. Sci., vol. lxxv, pp. 131150.Google Scholar
Wigglesworth, V. B., 1933 a. “The adaptation of mosquito larvæ to salt water,” Journ. Exp. Biol., vol. x, pp. 2737.CrossRefGoogle Scholar
Wigglesworth, V. B., 1933 b. “The physiology of the cuticle and of ecdysis in Rhodnius prolixusQuart. Journ. Micr. Sci., vol. lxxvi, pp. 269318.Google Scholar
Wigglesworth, V. B., 1934. Insect Physiology, Methuen & Co. Ltd., London.Google Scholar
Wigglesworth, V. B., 1938. “The absorption of fluid from the tracheal system of mosquito larvæ at hatching and moulting,” Journ. Exp. Biol., vol. xv, pp. 248254.CrossRefGoogle Scholar