Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-27T02:02:46.134Z Has data issue: false hasContentIssue false

Multivariate analysis of the population systematics of the ringed snake, Natrix natrix (L)*

Published online by Cambridge University Press:  05 December 2011

R. S. Thorpe
Affiliation:
Department of Zoology, University of Aberdeen
Get access

Synopsis

The racial affinities of the widely distributed (palearctic) ringed snake, Natrix natrix were assessed using a large number of phenotypic characters from a wide range of features. These characters show a considerable amount of complex geographic variation which is further complicated by geographic variation in the extent of their sexual, ontogenetic and local variation. Nevertheless, extensive analysis of the data using univariate statistics, numerical taxonomy and a wide range of multivariate statistics allowed the primary patterns of ‘racial’ differentiation to be elucidated.

The dominant feature of the racial affinities is the division of the majority of the complex into distinct eastern and western forms which meet along a ‘hybrid zone’. The nature of this zone is analysed in detail and discussed in relation to aspects of evolutionary theory such as gene flow. The island populations of Corsica and Sardinia are also extremely divergent. The evolution and taxonomy of the four primary subdivisions of the complex (east, west, Corsica, Sardinia) are discussed in relation to Pleistocene history, evolutionary theory, species concepts (phenetic and biological) and subspecies concepts, etc. These four subdivisions border on the species rank and may be regarded by some as semispecies. They are formally recognised as subspecies. Attention is drawn to the difficulties of intraspecific taxonomy and the arbitrary nature of the four taxa given formal recognition.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1979

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This paper was assisted in publication by a grant from the Carnegie Trust for the Universities of Scotland.

References

Amadon, D. and Short, L. L., 1976. Treatment of subspecies approaching species status. Syst. Zool., 25, 161167.Google Scholar
Arnold, E. N. and Burton, J. A., 1978. A field guide to the reptiles and amphibians of Britain and Europe. London: Collins.Google Scholar
Boulenger, G., 1893. Catalogue of snakes in the British Museum (Natural History), 1. London.Google Scholar
Clarke, B. C., 1966. The evolution of morph-ratio clines. Am. Nat., 100, 389402.CrossRefGoogle Scholar
Cook, A., 1975. Changes in the Carrion/Hooded Crow hybrid zone and the possible importance of climate. Bird Study, 22, 165168.CrossRefGoogle Scholar
Corbet, G. B., 1970. Patterns of Subspecific Variation. Symp. Zool. Soc. Lond., 26, 105116.Google Scholar
Davies, R., 1971. Computer Programming in Quantitative Biology. New York: Academic Press.Google Scholar
Dupraw, E. J., 1964. Non-Linnean Taxonomy. Nature, Lond., 202, 849852.Google Scholar
Ehrlich, P. R. and Raven, P. H., 1969. Differentiation of populations. Science, N. Y., 165, 12281232.Google Scholar
Endler, J. A., 1973. Gene flow and population differentiation. Science, N. Y., 179, 243250.CrossRefGoogle ScholarPubMed
Endler, J. A., 1977. Geographic Variation, Speciation and Clines. New Jersey: Princeton Univ. Press.Google Scholar
Gould, S. J., 1966. Allometry and size in ontogeny and phylogeny. Biol. Rev., 41, 587640.Google Scholar
Gould, S. J. and Johnston, R. J., 1972. Geographic variation. A. Rev. Ecol. Syst., 3, 457498.Google Scholar
Hecht, G., 1930. Systematik, Ausbreitungsgeschichte und Oekologie der europäischen Arten der Gattung Tropidonotus (Kuhl) H. Boie. Mitt. Zool. Mus. Berl., 16, 244393.Google Scholar
Hope, K., 1968. Methods of Multivariate Analysis. Univ. London Press.Google Scholar
Key, K. H. L., 1968. The concept of stasipatric speciation. Syst. Zool., 17, 1422.Google Scholar
Kramer, E., 1970. Revalidierte und neue Rassen der europaischen Schlangenfauna. Lav. Soc. Ital. Biogeogr., 1, 667676.Google Scholar
Mahalanobis, P. C., 1936. On the generalised distance in statistics. Proc. Natn. Inst. Sci. India, 2, 4955.Google Scholar
Mayr, E., 1963. Animal Species and Evolution. Cambridge, Mass.: Belknap Press, Harvard Univ. Press.Google Scholar
Meise, W., 1928. Die Verbreitung der Aaskrähe (Formenkreis Corvus corone L.). J. Orn., 76, 1203.Google Scholar
Mertens, R., 1947. Studien zur Eidonomie und Taxonomie der Ringelnatter (Natrix natrix). Abh. Senckenb. Naturforsch. Ges., 476, 138.Google Scholar
Mertens, R., 1957. Die Amphibien und Reptilien Korsikas. Senckenberg. Biol., 38, 175192.Google Scholar
Mertens, R., 1966. Über die sibirische Ringernatter, Natrix natrix scutata. Senckenberg. Biol., 47, 117119.Google Scholar
Pimental, R. A., 1959. Mendelian infraspecific divergence levels and their analysis. Syst. Zool., 8, 139159.Google Scholar
Rising, J. D., 1970. Morphological variation and evolution in some North American orioles. Syst. Zool., 19, 315351.Google Scholar
Sneath, P. H. A. and Sokal, R. R., 1973. Numerical Taxonomy. San Francisco: Freeman.Google Scholar
Sokal, R. R., 1965. Statistical methods in systematics. Biol. Rev., 40, 337391.Google Scholar
Sokal, R. R., 1973. The species problem reconsidered. Syst. Zool., 22, 360374.Google Scholar
Sokal, R. R. and Sneath, P. H. A., 1963. Principles of Numerical Taxonomy. San Francisco: W. H. Freeman.Google Scholar
Soule, M., 1972. Phenetics of natural populations. III. The sources of morphological variation in insular populations of a lizard. Am. Nat., 106, 429446.Google Scholar
Sparks, D. N. and Todd, A. D., 1973 a. A comparison of Fortran subroutines for calculating latent roots and vectors. Appl. Statist., 22, 220225.Google Scholar
Sparks, D. N. and Todd, A. D., 1973 b. Algorithm AS60. Latent roots and vectors of a symmetric matrix. Appl. Statist., 22, 260265.Google Scholar
Sparks, D. N. and Todd, A. D., 1974. Algorithm AS60. Latent roots and vectors of a symmetric matrix. Corrigendum. Appl. Statist., 23, 101102.Google Scholar
Thorpe, R. S., 1973. Intraspecific variation of the ringed snake, Natrix natrix (L.). Ph.D. Thesis, C.N.A.A.Google Scholar
Thorpe, R. S., 1975 a. Biometric analysis of incipient speciation in the ringed snake Natrix natrix (L.). Experientia, 31, 180182.Google Scholar
Thorpe, R. S., 1975 b. Quantitative handling of characters useful in snake systematics with particular reference to intraspecific variation in the ringed snake Natrix natrix (L.). Biol. J. Linn. Soc., 7, 2443.Google Scholar
Thorpe, R. S., 1976. Biometric analysis of geographic variation and racial affinities. Biol. Rev., 51, 407452.Google Scholar
Thorpe, R. S., 1980. A comparative study of ordination techniques in numerical taxonomy in relation to racial variation in the ringed snake Natrix natrix (L.) Biol .J .Linn. Soc., 12 (in press).Google Scholar
West, R. G., 1969. Pleistocene geology and biology. London: Longmans.Google Scholar
White, M. J. D., 1968. Models of speciation. Science, N.Y., 159, 10651070.Google Scholar
White, M. J. D., 1978. Modes of Speciation. San Francisco: Freeman.Google Scholar
Wilson, E. O. and Brown, W. L., 1953. The subspecies concept and its taxonomic application. Syst. Zool., 2, 97111.Google Scholar
Yang, S. Y. and Selander, R. K., 1968. Hybridization in the grackle Quiscalus quiscula in Louisiana. Syst. Zool., 17, 107143.Google Scholar