Skip to main content Accessibility help
×
Home

Microenvironments in marine sediments

  • J. G. Anderson (a1) and P. S. Meadows (a2)

Synopsis

Shallow water and intertidal marine sediments are often heterogeneous. This heterogeneity has led to a definition of microenvironments and their associated biological species. The definition encompasses habitat and species size, species behaviour and physiology, stability and environmental interfaces. We distinguish between open and closed interfaces, and suggest an associated topological structure. Examples are given from the intertidal zone. Three of these are discussed in detail.

(i)Sand grains. The occurrence of periphytic micro-organisms on sand grains is considered. The topography of the sand grain surface is closely related to the distribution of microbial colonies some of which contain a range of species. Bacteria, blue-green algae and diatoms have been identified. Species interactions and micro-variation in sediment physico-chemistry are likely to affect the constituents, distribution and abundance of the colonies. The activities of periphytic micro-organisms change the bulk properties of sediments.

(ii)Banding in sediments. Characteristic banding patterns are described from a sandy and muddy intertidal shore. Marked discontinuities in the microbial flora and physico-chemical properties occur at interfaces between the bands. For example, Eh, chlorophyll levels, and sulphide can all change dramatically over a few mm. The significance of these alterations for the meiobenthic and interstitial fauna is discussed.

(iii)Invertebrate burrow linings.Bioturbation structures including invertebrate burrows change local properties of sediments. The microbial and chemical properties of Nereis diversicolor burrow linings are described in detail. Sediment from the burrow lining closely resembles the sediment surface in many of its attributes. The sediment/water interfacial zone with its associated microbial and chemical properties is therefore extended vertically into sediments by these structures. Attention is drawn to the stabilising function of burrows and to their palaeoecological significance.

Copyright

References

Hide All
Anderson, J. G. and Meadows, P. S, 1969. Bacteria on intertidal sand grains. Hydrobiologia, 33, 3346.
Atkinson, H. J., 1973a. The respiratory physiology of the marine nematodes Enoplus brevis (Bastian) and E. communis (Bastian). I. The influence of oxygen tension and body size. J. Exp. Biol., 59, 255266.
Atkinson, H. J., 1973b. The respiratory physiology of the marine nematodes Enoplus brevis (Bastian) and E. communis (Bastian). II. The effects of changes in the imposed oxygen regime. J. Exp. Biol., 59, 267274.
Batoosingh, E. and Anthony, E. H., 1971. Direct and indirect observations of bacteria on marine pebbles. Can. J. Microbiol, 17, 655664.
Berner, R. A., 1976. The benthic boundary layer from the viewpoint of a geochemist. In The Benthic Boundary Layer, McCave, I. N., Ed. pp. 3355. Plenum, New York and London.
Cappenberg, T. E., 1974a. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. I. Field observations. Antonie van Leeuwenhoek, 40, 285295.
Cappenberg, T. E., 1974b. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh-water lake. II. Inhibition experiments. Antonie van Leeuwenhoek, 40, 297306.
Dale, N. G., 1974. Bacteria in intertidal sediments: factors related to their distribution. Limnol. Oceanogr., 19,509518.
de Wilde, P. A. W. J., 1976. The benthic boundary layer from the viewpoint of a biologist. In The Benthic Boundary Layer. McCave, I. N., Ed. pp. 8194. Plenum, New York and London.
Edwards, R. W., 1958. The effect of larvae of Chironomus riparius Meigen on the redox potentials of settled activated sludge. Ann. Appl. Biol., 46, 457464.
Edwards, R. W.and Rolley, H. L. J., 1965. Oxygen consumption in river muds. J. Ecol, 53, 119.
Farrow, G. E., 1975. Techniques for the study of fossil and recent traces. In The Study of Trace Fossils, Frey, R. W., Ed. Ch. 23. Springer, New York.
Fenchel, T., 1970. Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum. Limnol. Oceanogr., 15, 1420.
Fenchel, T., 1972. Aspects of decomposer food chains in marine benthos. Verh. Dt. Zool. Ges., 65, 1422.
Fenchel, T. and Riedl, R. J., 1970. The sulfide system: a new biotic community underneath the oxidised layer of marine sand bottoms. Mar. Biol., 7, 255268.
Goldhaber, M. and Kaplan, I. E., 1974. The sulfur cycle. In The Sea, 5, Goldberg, E. D., Ed. pp. 599655. Wiley-Interscience, New York.
Gray, T. R. G, Baxby, P., Hill, I. E. and Goodfellow, M., 1968. Direct observation of bacteria in soil. In The Ecology of Soil Bacteria, Gray, T. R. G. and Parkinson, D., Eds. pp. 171192. Liverpool University Press.
Hargrave, B. T., 1976. The central role of invertebrate faeces in sediment decomposition. In The Role of Terrestrial and Aquatic Organisms in Decomposition Processes, Anderson, J. M. and Macfadyen, A., Eds. pp. 301321. Blackwell, Oxford.
Hissett, R. and Gray, T. R. G., 1976. Microsites and time changes in soil microbial ecology. In The Role of Terrestrial and Aquatic Organisms in Decomposition Processes, Anderson, J. M. and Macfadyen, A., Eds. pp. 2339. Blackwell, Oxford.
Holland, A. S., Zingmark, R. G., Dean, J. M., 1974. Quantitative evidence concerning the stabilization of sediment by marine benthic diatoms. Mar. Biol., 27, 191196.
Jansson, B. O., 1962. Salinity resistance and salinity preference of two oligochaetes, Aktedrilus monospermathecus Knollner and Marionina preclitellochaeta n.sp., from the interstitial fauna of marine sandy beaches. Oikos, 13, 293305.
Lasserre, P., 1971. Donnees écologiques sur la répartition des oligochetes marins méio-benthiques. Incidence des paramètres salinité-température sur le métabolisme respiratoire de deux especes euryhalines du genre Marionina Michaelsen (1889) (Enchytraeidae, Oligochaeta). Vie Milieu, 22, 523540.
Lasserre, P., 1976. Metabolic activities of benthic microfauna and meiofauna. Recent advances and review of suitable methods of analysis. In The Benthic Boundary Layer, McCave, I. N., Ed. pp. 95142.Plenum, New York and London.
Lasserre, P.and Renaud-Mornant, J., 1973. Resistance and respiratory physiology of intertidal meiofauna to oxygen-deficiency. Neth. J. Sea Res., 7, 290302.
Lowe, W. E. and Gray, T. R. G., 1973. Ecological studies on coccoid bacteria in a pine forest soil. II. Growth of bacteria introduced into soil. Soil Biol. Biochem., 5, 449462.
Marshall, K. C, 1976. Interfaces in Microbial Ecology. Harvard University Press, Mass.
Marshall, K. C and Cruickshank, R. H., 1973. Cell surface hydrophobicity and the orientation of certain bacteria at interfaces. Arch. Mikrobiol., 91, 2940.
McIntyre, A. D., Davies, J. M., De Wilde, P. J., Lasserre, P., Mills, E. L., Pamatmat, M. M., Teal, J. M, Thiel, H., Zeitzchel, B. and Hargrave, B. T., 1976. Metabolism at the benthic boundary. In The Benthic Boundary Layer, McCave, I. N., Ed. pp. 297310. Plenum, New York and London.
Meadows, P. S., 1964a. Experiments on substrate selection by Corophium species: films and bacteria on sand particles. J. Exp. Biol., 41, 499511.
Meadows, P. S., 1964b. Substrate selection by Corophium species: the particle size of substrates. J. Anim. Ecol., 33, 387394
Meadows, P. S., 1965. Attachment of marine- and fresh-water bacteria to solid surfaces. Nature, Lond., 207 1108.
Meadows, P. S., 1971. The attachment of bacteria to solid surfaces. Arch. Mikrobiol., 75, 374381.
Meadows, P. S.and Anderson, J. G., 1966. Micro-organisms attached to marine and freshwater sand grains. Nature, Lond., 212, 10591060.
Meadows, P. S.and Anderson, J. G., 1968. Micro-organisms attached to marine sand grains. J. Mar. Biol. Ass. U.K., 48, 161175.
Meadows, P. S.and Campbell, J. I., 1972a. Habitat selection by aquatic invertebrates. Adv. Mar. Biol., 10,271382.
Meadows, P. S.and Campbell, J. I., 1972b. Habitat selection and animal distribution in the sea: the evolution of a concept. Proc. Roy. Soc. Edinb., B73, 145157.
Mendelson, B., 1968. Introduction to Topology. AUyn and Bacon, Boston.
Mudd, S. and Mudd, E. B. H., 1924a. The penetration of bacteria through capillary spaces. IV. A kinetic mechanism in interfaces. J. Exp. Med., 40, 633645.
Mudd, S and Mudd, E. B. H., 1924b. Certain interfacial tension relations and the behaviour of bacteria in films. J. Exp. Med., 40, 647660.
Nedwell, D. B. and Floodgate, G. D., 1972. The effect of microbiological activity upon the sedimentary sulphur cycle. Mar. Biol., 16, 192200.
Neumann, A. C., Gebelein, C. D., Scoffin, T. P., 1970. The composition, structure, and erodability of subtidal mats, Abaco, Bahamas. J. Sedim. Petrol., 40, 274297.
Nixon, S. W., Oviatt, C. A. and Hale, S. S., 1976. Nitrogen regeneration and the metabolism of coastal marine bottom communities. In The Role of Terrestrial and Aquatic Organisms in Decomposition Processes, Anderson, J. M. and Macfadyen, A., Eds. pp. 269283. Blackwell, Oxford.
Pugh, K. B., Andrews, A. R., Gibbs, C. F., Davis, S. J., Floodgate, G. D., 1974. Some physical, chemical and microbiological characteristics of two beaches of Anglesey.J. Exp. Mar. Biol. Ecol., 15,305334.
Ramm, A. E. and Bella, D. A., 1974. Sulfide production in anaerobic microcosisms. Limnol. Oceanogr., 19, 110118.
Richards, A. F. and Parks, J. M., 1976. Marine geotechnology. In The Benthic Boundary Layer, McCave, I. N., Ed. pp. 157181. Plenum, New York and London.
Rhoads, D. C., 1974. Organism-sediment relations on the muddy seafloor. Oceanogr. Mar. Biol. Ann.Rev., 12, 263300.
Rhoads, D. C and Young, D. K., 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. J. Mar. Res., 28, 150178.
Round, F. E. and Palmer, J. D., 1966. Persistent, vertical-migration rhythms in benthic microflora. II. Field and laboratory studies on diatoms from the banks of the River Avon. J. Mar. Biol. Ass. U.K., 46, 191214.
Rowe, G. T., 1974. The effects of the benthic fauna on the physical properties of deep-sea sediments. In Deep-Sea Sediments: Physical and Mechanical Properties, Inderbitzen, A. L., Ed. pp. 381400.Plenum, New York.
Schafer, W., 1972. Ecology and Paleoecology of Marine Environments. Oliver and Boyd, Edinburgh.
Scoffin, T. P., 1970. The trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas. J. Sedim. Petrol, 40, 249273.
Siala, A. and Gray, T. R. G., 1974. Growth of Bacillus subtilis and spore germination in soil observed by a fluorescent-antibody technique. J. Gen. Microbial., 81, 191198.
Swedmark, B., 1964. The interstitial fauna of marine sand. Biol. Rev., 39, 142.
Thorson, G., 1957. Bottom communities (sublittoral or shallow shelf). In Treatise on Marine Ecology and Paleoecology, Hedgpeth, J. W., Ed. Mem. Geol. Soc. Am., 67, 461534.
Webb, J. E., 1969. Biologically significant properties of submerged marine sands. Proc. Roy. Soc. Lond., 174B, 355402.
Webb, J. E., Dörjes, D. J., Gray, J. S., Hessler, R. R., Van Andel, Tj. H., Werner, F., Wolff, T., Zijlstra, J. J. and Rhoads, D. C., 1976. Organism-sediment relationships. In The Benthic Boundary Layer, McCave, I. N., Ed. pp. 273295. Plenum, New York and London.
Williams, S. T. and Mayfield, C. I., 1971. Studies on the ecology of actinomycetes in soil. III. The behaviour of neutrophilic streptomycetes in acid soil. Soil Biol. Biochem., 3, 197208.
Wood, E. J. F., 1967. Microbiology of Oceans and Estuaries. Elsevier, Amsterdam.
Young, D. K. and Rhoads, D. C., 1971. Animal sediment relations in Cape Cod Bay, Massachusetts. I. A transect study. Mar. Biol., 11, 242254.

Microenvironments in marine sediments

  • J. G. Anderson (a1) and P. S. Meadows (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.