Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-27T01:41:31.772Z Has data issue: false hasContentIssue false

Mechanisms of oxygen activation during plant stress

Published online by Cambridge University Press:  05 December 2011

Erich F. Elstner
Affiliation:
Lehrstuhl für Phytopathologie, Technische Universität München, 85350 Freising-Weihenstephan, Germany
Wolfgang Osswald
Affiliation:
Lehrstuhl für Phytopathologie, Technische Universität München, 85350 Freising-Weihenstephan, Germany
Get access

Synopsis

Green plants, within certain limitations, can adapt to a wide variety of unfavourable conditions such as drought, temperature changes, light variations, infectious attacks, air pollution and soil contamination. Depending on the strength of the individual impact(s), fluent or abrupt changes in visible or measurable stress symptoms indicate the deviation from normal metabolic conditions. Most of the visible or measurable symptoms are connected with altered oxygen metabolism principally concerning the transition from mostly heterolytic (two-electron transition) to increased homolytic (one-electron transition) processes. Homolytic reactions within metabolic sequences create, however, free radicals and have to be counteracted by the increase in radical-scavenging processes or compounds, thus warranting reaction sequences under metabolic control. At later states of stress episodes, the above control is gradually lost and more or less chaotic radical processes take over. Finally, cellular decompartmentalisations induce lytic and necrotic processes which are visible as the collapse of darkening cells or tissues. Every episode during this process is governed by a more or less denned balance between pro- and antioxidative capacities, including photosynthetic (strongly under metabolic and oxygen-detoxifying control) and photodynamic (only controlled by scavenger- and/or quencher-availability) reactions. This (theoretical) sequence of events in most cases can only be characterised punctually by strongly defined (analytical) indicator reactions (ESR) and is certainly species- and organ-specific.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamska, I., Klopstech, K. & Ohad, I. 1992. UV light stress induces the synthesis of the early light-inducible protein and prevents its degradation. Journal of Biological Chemistry 267, 24732–7.CrossRefGoogle ScholarPubMed
Albrecht, T., Kehlen, A., Stahl, K., Knöfel, H. D., Sembdner, G. & Weiler, E. W. 1993. Quantification of rapid, transient increases in jasmonic acid in wounded plants using a monoclonal antibody. Planta 191, 8694.CrossRefGoogle Scholar
Apostol, I., Heinstein, P. F. & Low, P. S. 1989. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiology 90, 109–16.CrossRefGoogle ScholarPubMed
Arntzen, C. J., Kyle, D. J., Wettern, M. & Ohad, I. 1984. Photoinhibition: a consequence of the accelerated breakdown of the apoprotein of the secondary electron acceptor of photosystem II. In Hallick, R., Staehelin, L. A. & Thornber, J. P. (Eds) Biosynthesis of the photosynthetic apparatus: molecular biology, development and regulation, pp. 313–24, New York: Alan R. Liss.Google Scholar
Asada, K. 1992. Ascorbate peroxidase - a hydrogen peroxide scavenging enzyme in plants. Physiologia Plantarum 85, 235–41.CrossRefGoogle Scholar
Avdiushko, S. A., Ye, X. S., Hildebrand, D. F. & Kuc, J. 1993. Induction of lipoxygenase in immunized cucumber plants. Physiological Molecular Plant Pathology 42, 8395.CrossRefGoogle Scholar
Badiani, M., Paolacci, A. R., D'Annibale, A. & Sermanni, G. G. 1993a. Antioxidants and photosynthesis in the leaves of Triticum durum L. seedlings acclimated to low, non-chilling temperature. Journal of Plant Physiology 142, 1824.CrossRefGoogle Scholar
Badiani, M., Schenone, G., Paolacci, A. R. & Fumagalli, I. 1993b. Daily fluctuations of antioxidants in bean (Phaseolus vulgaris L.) leaves as affected by the presence of ambient air pollutants. Plant Cell Physiology 34, 271–9.Google Scholar
Bannister, J. V. & Hill, H. A. O. (Eds) 1980. Chemical and biochemical aspects ofsuperoxide and superoxide dismutase. Developments in biochemistry, vol. 11 A, New York: Elsevier/North Holland.Google Scholar
Bannister, W. H. & Bannister, J. V. (Eds) 1980. Biological and clinical aspects of superoxide and superoxide dismutase. Developments in biochemistry, vol 11B, New York: Elsevier/North Holland.Google Scholar
Barja, G. 1993. Commentary: oxygen radicals, a failure or a success of evolution? Free Radical Research Communications 18, 6370.CrossRefGoogle ScholarPubMed
Becana, M. & Klucas, R. V. 1992. Transition metals in legume root nodules: iron-dependent free radical production increases during nodule senescence. Proceedings of the National Academy of Sciences USA 89, 8958–62.CrossRefGoogle ScholarPubMed
Bors, W., Saran, M. & Elstner, E. F. 1992. Screening for plant antioxidants. In Linkens, H. F. & Jackson, J. F. (Eds) Modern methods of plant analysis (new series, vol. 13: plant toxin analysis) pp. 277–95. Berlin: Springer Verlag.Google Scholar
Boucher, N. & Carpentier, R. 1993. Heat-stress stimulation of oxygen uptake by photosystem I involves the reduction ofsuperoxide radicals by specific electron donors. Photosynthesis Research 35, 213–18.CrossRefGoogle Scholar
Buettner, G. 1993. The pecking order of free radicals and antioxidants: lipid peroxidation, α-tocopherol and ascorbate. Archives of Biochemistry and Biophysics 300, 535–43.CrossRefGoogle ScholarPubMed
Cakmak, I., Strbac, D. & Marschner, H. 1993. Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. Journal of Experimental Botany 44, 127–32.CrossRefGoogle Scholar
Chalutz, E. & Droby, S. 1992. UV-induced resistance to postharvest diseases of citrus fruit. Journal of Photochemistry and Photobiology B: Biology 15, 367–74.CrossRefGoogle Scholar
Ciba Foundation Symposium 65 (New Series) 1979. Oxygen free radicals and tissue damage. Amsterdam: Excerpta Medica.Google Scholar
Cohen, G. & Greenwald, R. A. (Eds) 1983. Oxy radicals and their scavenger systems, Vol. I: molecular aspects. New York: Elsevier Biomedical.Google Scholar
De Vos, R. C. H., Bookum, T. W. M., Vooijs, R., Schat, H. & De Kok, L. J. 1993. Effect of copper on fatty acid composition and peroxidation of lipids in the roots of copper tolerant and sensitive Silene cucubalus. Plant Physiology and Biochemistry 31, 151–8.Google Scholar
Doke, N., Miura, Y., Chai, H. B. & Kawakita, K. 1991. Involvement of active oxygen in induction of plant defense response against infection and injury. In Pell, E. J. & Steffen, K. L. (Eds) Current topics in plant physiology, Vol. 6, pp. 8496. Rockville: American Society of Plant Physiologists.Google Scholar
Elstner, E. F. 1982. Oxygen activation and oxygen toxicity. Annual Reviews in Plant Physiology 33, 7396.CrossRefGoogle Scholar
Elstner, E. F. 1984. Comparison of ‘inflammation’ in pine needles and humans. In Bors, W., Saran, M. & Tait, D. (Eds) Oxygen radicals in chemistry and biology, pp. 967–81. Berlin: Walter de Gruyter & Co.Google Scholar
Elstner, E. F.q 1987. Metabolism of activated oxygen species. In Davies, P. P. (Ed.) The biochemistry of plants, vol. 11, Academic press: 253315.Google Scholar
Elstner, E. F. 1990. Der sauerstoff - Biochemie, biologie, medizin. Mannheim: Bl-Wissenschaftsverlag.Google Scholar
Elstner, E. F. 1991a. Mechanisms of oxygen activation in different compartments of plant cells. In Pell, E. J. & Steffen, K. L. (Eds) Current topics in plant physiology, pp. 1325.Google Scholar
Elstner, E. F. 1991b. Oxygen radicals - biochemical basis for their efficacy. Klinische Wochenschrift 69, 949–56.CrossRefGoogle ScholarPubMed
Elstner, E. F. & Frommeyer, D. 1978. Production of hydrogen peroxide by photosystem II of spinach chloroplast lamellae. FEBS Letters 86, 143–6.CrossRefGoogle ScholarPubMed
Elstner, E. F. & Heupel, A. 1974. On the mechanism of photosynthetic oxygen reduction by isolated chloroplast lamellae. Zeitschrift filr Naturforschung 29c, 559–63, 564-71.CrossRefGoogle ScholarPubMed
Elstner, E. F. & Heupel, A. 1976. Formation of hydrogen peroxide by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta 130, 175180.CrossRefGoogle ScholarPubMed
Elstner, E. F. & Osswald, W. 1980. Chlorophyll photobleaching and ethane production in dichlorophenyl-dimethylurea (DCMU)- or paraquat-treated Euglena gracilis cells. Z. Naturforsch. 35c, 129–35.CrossRefGoogle Scholar
Elstner, E. F. & Pils, I. 1979. Ethane formation and photobleaching in DCMU-treated Euglena gracilis cells and isolated spinach chloroplasts. Zeitschrift für Naturforschung 34c, 1040–3.CrossRefGoogle Scholar
Elstner, E. F., Konze, J. R., Selman, B. & Staffer, K. 1976. Ethylene formation in sugar beet leaves - evidence for the involvement of 3-hydroxytyramine and phenoloxidase after wounding. Plant Physiology 58, 163–8.CrossRefGoogle ScholarPubMed
Elstner, E. F., Saran, M., Bors, W. & Lengfelder, E. 1978. Oxygen activation in isolated chloroplasts. European Journal of Biochemistry 89, 61–6.CrossRefGoogle ScholarPubMed
Elstner, E. F., Wagner, G. A. & Schiltz, W. 1988. Activated oxygen in green plants in relation to stress situations. In Randall, D. D., Blevins, D. G. & Campbell, W. H. (Eds) Current topics in plant biochemistry and physiology, vol. 7, pp. 159–88. University of Missouri, Columbia Press.Google Scholar
Elstner, E. F., Osswald, W., Volpert, R. & Schempp, H. 1994. Phenolic antioxidants. Acta Horticultural (in press).CrossRefGoogle Scholar
Ferrer, M. A., Pedreno, M. A., Munoz, R. & Barcelo, A. R. 1992a. Constitutive isoflavones as modulators of indole-3-acetic acid oxidase activity of acidic cell wall isoperoxidases from lupin hypocotyls. Phytochemistry 31, 3681–4.CrossRefGoogle Scholar
Ferrer, M. A., Pedreno, M. A., Munoz, R. & Barcelo, A. R. 1992b. Hammett ps-correlation for the inhibition by indoles of coniferyl alcohol oxidation catalyzed by cell wall peroxidases. Biochemistry International 28, 949–55.Google Scholar
Firl, J., Frommeyer, D. & Elstner, E. F. 1981. Isolation and identification of an oxygen reducing factor (ORF) from isolated spinach chloroplast lamellae. Zeitschrift fur Naturforschung 36c, 284–94.CrossRefGoogle Scholar
Gilbert, D. L. (Ed) 1981. Oxygen and living processes. An interdisciplinary approach. Berlin: Springer Verlag.CrossRefGoogle Scholar
Greenwald, R. A. & Cohen, G. (Eds) 1983. Oxy radicals and their scavenger systems, vol. II: cellular and medical aspects, New York: Elsevier Biomedical.Google Scholar
Gross, G. G., Janse, C. & Elstner, E. F. 1977. Involvement of malate, monophenols and the superoxide radical in hydrogen peroxide formation by isolated cell walls from horseradish (Armoracia lapathifolia Gilib.). Planta 136, 271–6.CrossRefGoogle ScholarPubMed
Halliwell, B. & Gutteridge, J. M. C. 1989. Free radicals in biology and medicine. Oxford: Clarendon Press.Google Scholar
Hariyadi, P. & Parkin, K. L. 1993. Chilling-induced oxidative stress in cucumber (Cucumis sativus L.cv. Calypso) seedlings. Journal of Plant Physiology 141, 733–8.CrossRefGoogle Scholar
Harris, E. D. 1992. Regulation of antioxidant enzymes. FASEB Journal 6, 2657–83.CrossRefGoogle ScholarPubMed
Hayaishi, O. (Ed.) 1974. Molecular oxygen in biology. Topics in molecular oxygen research. Amsterdam: North Holland/American Elsevier.Google Scholar
Horemans, N., Asard, H. & Caubergs, R. J. 1994. The role of ascorbate free radical as an electron acceptor to cytochrome b-mediated trans-plasma membrane electron transport in higher plants. Plant Physiology 104, 1455–8.CrossRefGoogle ScholarPubMed
Kauss, H., Theisinger-Hinkel, E., Mindermann, R. & Conrath, U. 1992. Dichloro isonicotinic and salicylic acid, inducers of systemic acquired resistance, enhance fungal elicitor responses in parsley cells. The Plant Journal 2, 655–60.CrossRefGoogle Scholar
Kondo, Y., Miyazawa, T. & Mizitani, J. 1992. Detection and time-course analysis of phospholipid hydroperoxide in soybean seedlings after treatment with fungal elicitor, by chemiluminescence-HPLC assay. Biochimica et Biophysica Acta 1127, 227–32.CrossRefGoogle ScholarPubMed
Konze, J. R. & Elstner, E. F. 1978. Ethane and ethylene formation by mitochondria as indication of aerobic lipid degradation in response to wounding of plant tissue. Biochimica et Biophysica Acta 528, 213–21.CrossRefGoogle ScholarPubMed
Krylov, S. N., Krylova, S. M. & Rubin, L. B. 1993. Threshold effect of caffeic acid on peroxidase-catalyzed oxidation of indole-3-acetic acid. Phytochemistry 33, 912.CrossRefGoogle Scholar
Lee, T. T., Starratt, A. N., Jevnikar, J. J. & Stoessl, A. 1980. New phenolic inhibitors of the peroxidase-catalyzed oxidation of indole-3-acetic acid. Phytochemistry 19, 2277–80.CrossRefGoogle Scholar
Legendre, L., Heinstein, P. F. & Low, P. S. 1992. Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. Journal of Biological Chemistry 267, 20140–7.CrossRefGoogle ScholarPubMed
Leprince, O., Atherton, N. M., Deltour, R. & Hendry, G. A. F. 1994. The involvement of respiration in free radical process during loss of dessication tolerance in germinating Zea mays L. Plant Physiology 104, 1333–9.CrossRefGoogle ScholarPubMed
Leshem, Y. Y. Halevy, A. H. & Frenkel, C. 1986. Processes and control of plant senescence. In: Developments in crop sciences, vol. 8. Amsterdam: Elsevier.Google Scholar
Liu, G. T., Zhang, T. M., Wang, A. E. & Wang, Y. W. 1992. Protective action of seven natural phenolic compounds against peroxidative damage to biomembranes. Biochemical Pharmacology 43, 147–52.CrossRefGoogle ScholarPubMed
Macpherson, A. N., Telfer, A., Barber, J. & Truscott, T. G. 1993. Direct detection of singlet oxygen from isolated photosystem II reaction centres. Biochimica et Biophysica Ada 1143, 301–9.CrossRefGoogle Scholar
Malamy, J. & Klessig, D. F. 1992. Salicylic acid and plant disease resistance. The Plant Journal 2, 643–54.CrossRefGoogle Scholar
Mapson, L. W. & Wardale, D. A. 1972. Role of indolyl-3-acetic acid in the formation of ethylene from 4-methylmercapto-2-oxo butyric acid by peroxidase. Phytochemistry 11, 1371–87.CrossRefGoogle Scholar
Michelson, A. M., McCord, J. M. & Fridovich, I. (Eds) 1977. Superoxide and superoxide dismutases. London: Academic Press.Google Scholar
Mishra, N. P., Mishra, R. K. & Singhal, G. S. 1993. Involvement of active oxygen species in photoinhibition of photosystem II: protection of photosynthetic efficiency and inhibition of lipid peroxidation by superoxide dismutase and catalase. Journal of Photochemistry and Photobiology, B: Biology 19, 1924.CrossRefGoogle Scholar
Montalbini, P., Koch, F., Burba, M. & Elstner, E. F. 1978. Increase in lipid-dependent carotene destruction as compared to ethylene formation and chlorophyllase activity following mixed infection of sugar beet (Beta vulgaris L.) with beet yellows virus and beet mildyellowing virus. Physiological Plant Pathology 12, 211–23.CrossRefGoogle Scholar
Morre, J. D., Brightman, A. O., Davidson, M. & Crane, F. L. 1993. NADH oxidase activity of plasma membranes of soybean hypocotyls is activated by guanine nucleotides. Plant Physiology 102, 595602.CrossRefGoogle ScholarPubMed
Nedbal, L., Samson, G. & Whitmarsh, J. 1992. Redox state of a one-electron component controls the rate of photoinhibition of photosystem II. Proceedings of the National Academy of Sciences USA 89, 7929–33.CrossRefGoogle ScholarPubMed
Nicholson, R. L. & Hammerschmidt, R. 1992. Phenolic compounds and role in disease resistance. Annual Reviews in Phytopathology 30, 369–89.CrossRefGoogle Scholar
Oshio, H., Shibata, H., Mito, N., Yamamoto, M., Harris, E. H., Gillham, N. W., Boynton, J. E. & Sato, R. 1993. Isolation and characterization of a Chlamydomonas reinhardtii mutant resistant to photobleaching herbicides. Zeitschrift für Naturforschung 48c, 339–44.CrossRefGoogle Scholar
Osswald, W. F. & Elstner, E. F. 1987. Investigations on spruce decline in the Bavarian forest. Free Radical Research Communications 3, 185–92.CrossRefGoogle ScholarPubMed
Osswald, W. F., Senger, H. & Elstner, E. F. 1987. Ascorbic acid and glutathione contents of spruce needles from different locations in Bavaria. Zeitschrift für Naturforschung 42c, 879–84.CrossRefGoogle Scholar
Osswald, W. F., Schtitz, W. & Elstner, E. F. 1989a. Indole-3-acetic acid and p-hydroxy acetophenone driven ethylene formation from 1-aminocyclopropane-l-carboxylic acid catalyzed by horseradish peroxidase. Journal of Plant Physiology 134, 510–13.CrossRefGoogle Scholar
Osswald, W. F., Schütz, W. & Elstner, E. F. 1989b. Cysteine and crocin oxidation catalyzed by horseradish peroxidase. Free Radical Research Communications 5, 259–65.CrossRefGoogle ScholarPubMed
Osswald, W. F., Kraus, R., Hippeli, S., Benz, T., Volpert, R. & Elstner, E. F. 1992. Comparison of the enzymatic activities of dehydroascorbic acid reductase, glutathione reductase, catalase, peroxidase and superoxide dismutase of healthy and damaged spruce needles (Picea abies (L.) Karst.). Journal of Plant Physiology 139, 742–8.CrossRefGoogle Scholar
Osswald, W. F., Schneider, I., Nemec, S. & Elstner, E. F. 1993. Mechanism of oxygen activation by the fungal toxin, dihydrofusarubin (manuscript submitted for publication).Google Scholar
Pastori, G. M. & Trippi, V. S. 1992. Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain. Plant Cell Physiology 33, 957–61.Google Scholar
Pastori, G. M. & Trippi, V. S. 1993. Antioxidative protection in a drought-resistant maize strain during leaf senescence. Physiologia Plantarum 87, 227–31.CrossRefGoogle Scholar
Pell, E. J. & Steffen, K. L. (Eds) 1991. Current topics in plant physiology, vol. 6 (their paper — Active oxygen/oxidative stress and plant metabolism). Rockville: American Society of Plant Physiologists.Google Scholar
Pryor, W. A. (Ed.) 1975-1982. Free radicals in biology, vols I–V. New York: Academic Press.Google Scholar
Puppo, A. 1992. Effects of flavonoids on hydroxyl radical formation by Fenton-type reactions: influence of the iron chelator. Phytochemistry 31, 85–8.CrossRefGoogle Scholar
Renelt, A., Colling, C., Hahlbrock, K., Nurnberger, T., Parker, J. E., Sacks, W. R. & Scheel, D. 1993. Studies on elicitor recognition and signal transduction in plant defence. Journal of Experimental Botany 44, 257–68.Google Scholar
Scandalios, J. G. (Ed.) 1992. Molecular biology of free radical systems. New York: Cold Spring Harbor Laboratory Press.Google Scholar
Schlee, D. 1992. Ökologische Biochemie (2.Auflage). Jena: Gustav Fischer Verlag.Google Scholar
Schobert, B. & Elstner, E. F. 1980. Production of hexanal and ethane by Phaeodactylum tricornutum and its correlation to fatty acid oxidation and bleaching of photosynthetic pigments. Plant Physiology 66, 215–19.CrossRefGoogle ScholarPubMed
Schopfer, P. 1994. Histochemical demonstration and localization of H2O2 in organs of higher plants by tissue printing on nitrocellulose paper. Plant Physiology 104, 1269–75.CrossRefGoogle ScholarPubMed
Schwacke, R. & Hager, A. 1992. Fungal elicitors induce a transient release of active oxygen species from cultured spruce cells that is dependent on Ca2+ and protein-kinase activity. Planta 187, 136–41.CrossRefGoogle ScholarPubMed
Seel, W. E., Hendry, G. A. F. & Lee, J. A. 1992. Effects of desiccation on some activated oxygen processing enzymes and antioxidants in mosses. Journal of Experimental Botany 43, 1031–37.CrossRefGoogle Scholar
Shigeoka, S., Takeda, T. & Hanaoka, T. 1991. Characterization and immunological properties of selenium-containing glutathione peroxidase induced by selenite in Chlamydomonas reinhardtii. Biochemical Journal 275, 623–7.CrossRefGoogle ScholarPubMed
Sies, H. (Ed.) 1985 and 1991. Oxidative stress - oxidants and antioxidants. New York: Academic Press.Google Scholar
Slawinski, J., Ezzahir, A., Godlewski, M., Kwiecinska, T., Rajfur, Z., Sitko, D. & Wierzuchowska, D. 1992. Stress-induced photon emission from perturbed organisms. Experientia 48, 1041–58.CrossRefGoogle ScholarPubMed
Sneltemeyer, D. F., Klug, K. & Fock, H. P. 1986. Effect of photon fluence rate on oxygen evolution and uptake by Chlamydomonas reinhardtii suspensions grown in ambient and CO2-enriched air. Plant Physiology 81, 372–5.CrossRefGoogle Scholar
Song, P. S. (Ed.) 1978. Singlet oxygen and related species in chemistry and biology. Photochemistry and Photobiology (Special Issue). Oxford: Pergamon Press.Google Scholar
Spencer, K. G., Kimpel, D. L., Fisher, M. L., Togasaki, R. K. & Miyachi, S. 1983. Carbonic anhydrase in Chlamydomonas reinhardtii. I. Requirements for carbonic anhydrase induction. Plant Cell Physiology 24, 301–4.CrossRefGoogle Scholar
Takahama, U., Youngman, R. J. & Elstner, E. F. 1984. Transformation of quercetin by singlet oxygen generated by a photosensitized reaction. Photobiochemistry and Photobiophysics 7, 175–81.Google Scholar
Van Kuijk, F. J. G. M., Sevanian, A., Handelman, G. J. & Dratz, E. A. 1987. A new role for phospholipase A2: protection of membranes from lipid peroxidation damage. Trends in Biochemical Sciences 12, 31–4.CrossRefGoogle Scholar
Vera-Estrella, R., Blumwald, E. & Higgins, V. J. 1993. Non-specific glycopeptide elicitors of Cladosporium fuhum: evidence for involvement of active oxygen species in elicitor-induced effects on tomato cell suspensions. Physiological and Molecular Plant Pathology 42, 922.CrossRefGoogle Scholar
Volk, S. & Feierabend, J. 1989. Photoinactivation of catalase at low temperature and its relevance to photosynthetic and peroxide metabolism in leaves. Plant Cell Environment 12, 701–12.CrossRefGoogle Scholar
Volpert, R. & Elstner, E. F. 1994. Concentration effects of different cinnamic acid derivatives on the oxidation of indole acetic acid by horseradish peroxidase. Phytochemistry (in press).Google Scholar
Wagner, G. A., Youngman, R. J. & Elstner, E. F. 1988. Inhibition of chloroplast photo-oxidation by flavonoids and mechanism of the antioxidative action. Journal of Photochemistry and Photobiology, B: Biology 1, 451–60.CrossRefGoogle Scholar
Yokota, A. & Canvin, D. T. 1986. Changes of ribulose bisphosphate carboxylase/oxygenase content, ribulose bisphosphate concentration, and photosynthetic activity during adaptation of high-CO2 grown cell to low-CO2 conditions in Chlorella pyrenoidosa. Plant Physiology 81, 341–5.CrossRefGoogle Scholar
Youngman, R. J., Schieberle, P., Grosch, W. & Elstner, E. F. 1983. The photodynamic generation of singlet molecular oxygen by the fungal phytotoxin, cercosporin. Photobiochemistry and Photobiophysics 6, 109119.Google Scholar
Youngman, R. J. & Elstner, E. F. 1984. Photodynamic and reductive mechanisms of oxygen activation by the fungal phytotoxins, cercosporin and dothistromin. In Bors, W., Saran, M. & Tait, D. (Eds) Oxygen radicals in chemistry and biology, pp. 501–8. Berlin: Walter de Gruyter & Co.CrossRefGoogle Scholar