Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-25T04:48:26.978Z Has data issue: false hasContentIssue false

Gametogenesis: the playground of the developmental cytologist

Published online by Cambridge University Press:  05 December 2011

C. C. J. Miller
Affiliation:
Department of Immunology, St George's HospitalMedical School, Tooting, London SW17, U.K.
J. G. Duckett
Affiliation:
School of Biological Sciences, Queen Mary College, Mile End Road, London El 4NS, U.K.
B. Kirkham
Affiliation:
School of Biological Sciences, Queen Mary College, Mile End Road, London El 4NS, U.K.
Get access

Synopsis

Developmental ultrastructural studies have led to major advances in our understanding of key questions ranging from the causal basis for the alternation of generations and the role of the cytoskeleton in cellshaping processes to the phylogeny of archegoniate plants. Oogenesis is characterised by profound nuclearcytoplasmic interactions accompanied by striking changes in the egg mitochondria and plastids. At fertilization, egg penetration is a physical process and the plastids from the spermatozoids are excluded from the egg. Considerable dissimilarity between the shapes of the biflagellate spermatozoids of Lycopodium and Selaginella underlines their ancient separation. Equally striking differences in spermatozoid architecture argue against any direct phyletic link between heterosporous and homosporous ferns. Taxonomic variations between the spermatozoids of homosporous ferns suggests blepharoplast morphology to be a potentially rich source of new systematic data. Whilst there is general agreement that the multilayered structure is a cytoskeletal alignment system, a proposed shape-generating system situated near the nuclear envelope, which provides the force necessary for spermatozoid morphogensis, has not yet been identified. New fixation procedures have revealed hitherto overlooked filamentous elements associated with the nucleus. Whereas tests for actin were negative, immunoblotting suggests that these contain the intermediate filament protein antigens.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, P. R. 1979. Gametogenesis and fertilization in ferns. In The Experimental Biology of Ferns, ed. Dyer, A. F., pp. 471503. London: Academic Press.Google Scholar
Bell, P. R. and Duckett, J. G. 1976. Gametogenesis and fertilization in Pteridium. Bot. J. Linn. Soc. 73, 4778.CrossRefGoogle Scholar
Duckett, J. G. 1973. An ultrastructural study of the differentiation of the spermatozoid of Equisetum. J. Cell Sci. 12, 95129.CrossRefGoogle ScholarPubMed
Duckett, J. G. and Bell, P. R. 1977. An ultrastructural study of the mature spermatozoid of Equisetum. Phil. Trans. Roy. Soc. 277B, 131158.Google Scholar
Duckett, J. G. and Pang, W. C. 1984. The origins of heterospory: a comparative study of sexual behaviour in the fern Platyzoma microphyllum R. Br. and Equisetum giganteum. L. Bot. J. Linn. Soc. 88, 1134.Google Scholar
Duckett, J. G. Carothers, Z. B. and Miller, C. C. J. 1982. Comparative spermatology and bryophyte phylogeny. J. Hattori Bot. Lab. 53, 107125.Google Scholar
Duckett, J. G. Carothers, Z. B. and Miller, C. C. J. 1983. Gametogenesis. In New Manual of Bryology, ed. Schuster, R. M., pp. 232275. Nichinan: Hattori Botanical Laboratory.Google Scholar
Duckett, J. G. Carothers, Z. B. 1980. Ultrastructural studies of spermatogenesis in Anthocerotales III. Gamete morphogenesis: from spermatogenous cell through midstage spermaticd. Gamete Res. 3, 149167.Google Scholar
Duckett, J. G. Klekowski, E. J. Jr and Hickok, L. G. 1979. Ultrastructural studies of mutant spermatozoids in ferns. I. The mature non-motile spermatozoid of mutation 230X in Ceratopteris thalictroides (L.) Brongn. Gamete Res. 2, 317343.CrossRefGoogle Scholar
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, Land. 227, 680685.CrossRefGoogle ScholarPubMed
Lloyd, C. W. (Ed.) 1982. The Cytoskeleton in Plant Growth and Development. London: Academic Press.Google Scholar
Miller, C. C. J. 1983. Experimental Studies on Spermatogenesis in Bryophytes. University of London: Ph.D. Thesis.Google Scholar
Miller, C. C. J. Duckett, J. G., Sheterline, P. and Carothers, Z. B. 1983. Immmunofluorescence microscopy of the flagella and multilayered structure in two mosses, Sphagnum palustre L. and Polytrichum juniperinum Hedw. J. Cell Sci. 61, 7186.Google Scholar
Myles, D. G. 1978. The fine structure of fertilization in the fern Marsilea vestita. J. Cell Sci. 30, 265281.Google Scholar
Myles, D. G. and Hepler, P. K. 1977. Spermiogenesis in the fern Marsilea microtubules, nuclear shaping and cytomorphogenesis. J. Cell Sci. 23, 5783.Google Scholar
Myles, D. G. and Hepler, P. K. 1982. Shaping of the sperm nucleus in Marsilea: a distinction between factors responsible for shape generation and shape determination. Devi Biol. 90, 238252.CrossRefGoogle ScholarPubMed
Powell, A. J., Peace, G. W., Slabas, A. R. and Lloyd, C. W. 1982. The detergent-resistant cytoskeleton of higher plant protoplast contains nuclear-associated fibrillar bundles in addition to microtubules. J. Cell Sci. 56, 319335.Google Scholar
Pruss, R. M., Mirsky, R., Raff, M. C., Thorpe, R. Dowding, A. J. and Anderton, B. H. 1981. All classes of intermediate filaments share a common antigenic determinant defined by a monoclonal antibody. Cell 27, 419428.CrossRefGoogle Scholar
Robbins, R. R. and Carothers, Z. B. 1978. Spermatogenesis in Lycopodium: the mature spermatozoid. Am. J. Bot. 65, 433440.Google Scholar
Robert, D. 1974. Ëtude ultrastructurale de la spermiogenèse, notamment, de la différentiation de l'appareil nucléaire, chez le Selaginella kraussiana (Kunze) A. Br. Annls Sci. Nat. Bot. Paris 15, 65118.Google Scholar
Sheffield, E., Laird, S. and Bell, P. R. 1983. Ultrastructural aspects of sporogenesis in the apogamous fern Dryopteris borreri. J. Cell Sci. 63, 125134.CrossRefGoogle ScholarPubMed
Sluiman, H. J. 1983. The flagellar apparatus of the zoospore of the filamentous green alga Coleochaete pulvinata: absolute configuration and phylogenetic significance. Protoplasma 115, 160175.CrossRefGoogle Scholar
Stein, D. B. 1985. Nucleic acid comparisons as a tool in understanding species interrelationships and phylogeny. Proc. Roy. Soc. Edinb. 86B, 283288.Google Scholar
Steinert, P. M. 1982. Intermediate filaments. In Electron Microscopy of Proteins, ed. Harris, J. R., Vol. 2, pp. 125165. New York: Academic Press.Google Scholar
Tiwari, S. C., Wick, S. M., Williamson, R. E. and Gunning, B. E. S. 1984. Cytoskeleton and integration of cellular junctions in cells of higher plants. J. Cell Biol. 99, 63s69s.CrossRefGoogle Scholar
Towbin, H., Stachelin, T. and Gordon, J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natn Acad. Sci. U.S.A. 76, 4354354.Google Scholar