Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T10:07:53.983Z Has data issue: false hasContentIssue false

The ecology of plankton in Scottish coastal waters

Published online by Cambridge University Press:  05 December 2011

Paul Tett
Affiliation:
University of Wales, School of Ocean Sciences, Menai Bridge, Wales LL59 5EY, U.K.
Get access

Synopsis

The lives of the plants, animals and bacteria of the plankton are ruled by the diffusive nature of their fluid medium, in which vertical turbulence is sometimes checked by density gradients caused by surface heating or inflow of freshwater. Seasonal and spatial changes in the production and species composition of phytoplankton and associated microheterotrophs result from interactions amongst light penetration, supply of mineral nutrients, and vertical mixing; many species are capable of rapid increase when multiplication exceeds losses by dispersion and predation. Water depth, currents, dispersion and food supplies control mesozooplankton.

Although Scottish coastal waters include a variety of pelagic environments, there is little evidence of site-specific flora or fauna. Planktonic assemblages are, however, locally more diverse than expected. If this excess diversity is a result of ever-changing conditions, the composition of microplanktonic associations may be largely decided by chance. Explanations based on niche theory seem to apply convincingly only to the larger, semi-nektonic, pelagic crustaceans. Thus, consideration of issues relating to conservation raises fundamental and difficult questions about the biology of plankton.

Conservation of species is impractical if accident plays a large part in recruitment and replacement. Conversely, the dispersive nature of the pelagic environment and the weakness of interspecific relations may lessen the sensitivity of plankton to anthropogenic perturbations. Nevertheless, eutrophication and climatic change can disturb pelagic communities, especially in enclosed waters.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J. A. 1986. Zooplankton investigations in the Firth of Clyde. Proceedings of the Royal Society of Edinburgh 90B, 239–54.Google Scholar
Adams, J. A. 1987. The primary ecological sub-divisions of the North Sea: some aspects of their plankton communities. In Developments in fisheries research in Scotland, pp. 165–81, ed. Bailey, R. S. & Parrish, B. B. Farnham, England: Fishing News Books Ltd.Google Scholar
Adams, J. A. & Baird, I. E. 1965. Chlorophyll a, particulate organic carbon and zooplankton standing crop in the northern North Sea. Annales biologiques, Copenhagen 20, 91–2.Google Scholar
Adams, J. A. & Martin, J. H. A. 1986. The hydrography and plankton of the Moray Firth. Proceedings of the Royal Society of Edinburgh 91B, 137–56.Google Scholar
Ansell, A. D. 1974. Sedimentation of organic detritus in Lochs Etive and Creran, Argyll, Scotland. Marine Biology 27, 263–73.Google Scholar
Ayres, P. A., Seaton, D. D. & Tett, P. B. 1982. Plankton blooms of economic importance to fisheries in UK waters, 1968–82. ICES CM 1982/L:38. 12 pp.Google Scholar
Bailey, R. S., McKay, D. W., Morrison, J. A. & Walsh, M. 1986. The biology and management of herring and other pelagic fish stocks in the Firth of Clyde. Proceedings of the Royal Society of Edinburgh 90B, 407–22.Google Scholar
Balech, E. 1985. The genus Alexandrium or Gonyaulax of the tamarensis group. In Toxic Dinoflagellates: proceedings of the third International Conference on Toxic Dinoflagellates, pp. 338, ed. Anderson, D. S., White, A. W. & Baden, D. G. Amsterdam: Elsevier.Google Scholar
Balls, P. W. 1986. Trace metals in water and suspended particulates – a synopsis. Proceedings of the Royal Society of Edinburgh 90B, 127–8.Google Scholar
Barnes, H. 1950. Sagitta setosa J. Müller in the Clyde. Nature 166, 447.CrossRefGoogle Scholar
Boney, A. D. 1986. Seasonal studies on the phytoplankton and primary production in the inner Firth of Clyde. Proceedings of the Royal Society of Edinburgh 90B, 203–22.Google Scholar
Bowman, M. J., Esias, W. E. & Schnitzer, M. B. 1981. Tidal stirring and the distribution of phytoplankton in Long Island and Block Island Sounds. Journal of Marine Research 39, 587603.Google Scholar
Brand, L. E. 1989. Review of genetic variation in marine phytoplankton species and the ecological implications. Biological Oceanography 6, 397409.Google Scholar
Klein Breteler, W. C. M. 1982. The life stages of four pelagic copepods (Copepoda: Calanoida) illustrated by a series of photographs. Netherlands Institute for Sea Research Publication Series 6, 32 pp.Google Scholar
C.E.C. 1989. Proposal for a Council Directive concerning municipal waste water treatment. Commission of the European Communities, COM(89) 518, Brussels.Google Scholar
Colebrook, J. M. 1964. Continuous plankton records: a principal component analysis of the geographical distribution of zooplankton. Bulletins of Marine Ecology 6, 78100.Google Scholar
Colebrook, J. M. 1978. Continuous plankton records: zooplankton and environment, north-east Atlantic and North Sea: 1948–1975. Oceanologica Ada 1, 923.Google Scholar
Colebrook, J. M. 1982. Continuous plankton records: seasonal variations in the distribution and abundance of plankton in the North Atlantic Ocean and the North Sea. Journal of Plankton Research 4, 435–62.CrossRefGoogle Scholar
Colebrook, J. M., Glover, R. S. & Robinson, G. A. 1961. Continuous plankton records: Contributions towards a plankton atlas of the North-Eastern Atlantic and the North Sea. General introduction. Bulletins of Marine Ecology 5, 6780.Google Scholar
Cosson, R. P. & Martin, J.-L. M. 1981. The effects of copper on the embryonic development, larvae, alevins, and juveniles of Dicentrarchus labrax (L). Rapports et Procès-verbaux des Réunions, Conseil international pour l'Exploration de la Mer 178, 71–5.Google Scholar
Costas, E. & Verela, M. 1987. Competencia interespecifica en microalgas: el papel de los componentes geneticos. (English abstract.) Boletin del Instituto Español de Oceanografia 4, 101–6.Google Scholar
Cottrell, J. C. & Tett, P. 1973. The chemical analysis of some dissolved and particulate nutrients found in Loch Creran in 1973 and their relation to the chlorophyll concentration. Scottish Marine Biological Association Internal Reports, 1, 72 pp; SMBA, Oban.Google Scholar
Crawford, D. W. 1989. Mesodinium rubrum: the phytoplankter that wasn't. Marine Ecology – Progress Series 58, 161–74.CrossRefGoogle Scholar
Cushing, D.H. 1967. The grouping of herring populations. Journal of the Marine Biological Association of the United Kingdom 47, 193208.CrossRefGoogle Scholar
Cushing, D.H. 1984. The gadoid outburst in the North Sea. Journal du Conseil international pour l'Exploration de la Mer 41, 159–66.CrossRefGoogle Scholar
Dooley, H. D. 1981. The role of axially varying vertical mixing along the path of a current in generating phytoplankton production. Philosophical Transactions of the Royal Society of London (A) 302, 649–60.Google Scholar
Edwards, A. & Edelsten, D. J. 1977. Deep water renewal of Loch Etive: a three basin Scottish fjord. Estuarine and Coastal Marine Science 5, 575–95.Google Scholar
Edwards, A. & Grantham, B. E. 1986. Inorganic nutrient regeneration in Loch Etive bottom water. In The role of freshwater outflow in coastal marine ecosystems, pp. 195204, ed. Skreslet, S., NATO ASI Series, Vol. G7. Berlin: Springer-VerlagCrossRefGoogle Scholar
Edwards, A., Baxter, M. S., Ellett, D. J., Martin, J. H. A., Meldrum, D. T. & Griffiths, C. R. 1986. Clyde Sea hydrography. Proceedings of the Royal Society of Edinburgh 90B, 6783.Google Scholar
Ellett, D. J. & Edwards, A. 1983. Oceanography and inshore hydrography of the Inner Hebrides. Proceedings of the Royal Society of Edinburgh 83B, 143–60.Google Scholar
Einarsson, H. 1945. Euphausiacea. I. Northern Atlantic species. Dana Report 27, 185 pp.Google Scholar
Fransz, H. G. & Gieskes, W. W. C. 1984. The unbalance of phytoplankton and copepods in the North Sea. Rapports et Procès-verbaux des Réunions, Conseil International pour l'Exploration de la Mer 183, 218–25.Google Scholar
Fraser, J. H. 1952. The Chaetognatha and other zooplankton of the Scottish area and their value as biological indicators of hydrological conditions. Marine Research, Scotland, 1952 (2).Google Scholar
Fraser, J. H. 1955. The plankton of the waters approaching the British Isles in 1953. Marine Research, Scotland, 1955 (1).Google Scholar
Fraser, J. H. 1962. The rôle of ctenophores and salps in zooplankton production and standing crop. Rapports et Procès-verbaux des Réunions, Conseil International pour l'Exploration de la Mer 153, 121–3.Google Scholar
Fraser, J. H. 1965. Zooplankton indicator species in the North Sea. Serial Atlas of the Marine Environment, Folio 8, ed. Webster, W., American Geographic Society, New York.Google Scholar
Gowen, R. J. 1987. Toxic phytoplankton in Scottish coastal waters. Rapports et Procès-verbaux des Réunions, Conseil International pour l'Exploration de la Mer 187, 8993.Google Scholar
Gowen, R. J., Tett, P. & Jones, K. J. 1983. The hydrography and phytoplankton ecology of Loch Ardbhair: a small sea-loch on the west coast of Scotland. Journal of Experimental Marine Biology and Ecology, 71, 116.CrossRefGoogle Scholar
Grantham, B. & Tett, P. ms. The nutrient status of the Clyde Sea in winter. Estuarine, Coastal and Shelf Science (submitted).Google Scholar
Gray, J. S. 1982. Effects of pollutants on marine ecosystems. Netherlands Journal of Sea Research 16, 424–43.Google Scholar
Greve, W. 1977. Interspecific interaction: the analysis of complex structures in carnivorous zooplankton populations. Helgolander wissenschaftliche Meeresuntersuchungen 39, 8391.Google Scholar
Grice, G. D., Harris, R. P., Reeve, M. R., Heinbokel, J. F. & Davis, C. O. 1980. Large-scale enclosed water-column ecosystems. An overview of Foodweb I, the final CEPEX experiment. Journal of the Marine Biological Association of the United Kingdom 60, 401–14.CrossRefGoogle Scholar
Haig, A. J. N. 1986. Use of the Clyde estuary and Firth for the disposal of effluents. Proceedings of the Royal Society of Edinburgh 90B, 393405.Google Scholar
Hannah, F. J. & Boney, A. D. 1983. Nanophytoplankton in the Firth of Clyde, Scotland: Seasonal abundance, carbon fixation and species composition. Journal of Experimental Marine Biology and Ecology 67, 105–47.Google Scholar
Hardy, A. C. 1924. The herring in relation to its animate environment. Part 1. The food and feeding habits of the herring with special reference to the east coast of England. Fisheries Investigations ser. II, 7(3), 53 pp.Google Scholar
Hardy, A. C. 1970. The open sea: its natural history. Part I: the world of plankton. 2nd edn. London: Collins.Google Scholar
Harris, G. P. 1986. Phytoplankton ecology: structure, function and fluctuation. London: Chapman & Hall.CrossRefGoogle Scholar
Hecky, R. E. & Kilham, P. 1988. Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment Limnology and Oceanography 33, 796822.Google Scholar
Heimdal, B. R., Hasle, G. R. & Throndsen, J. 1973. An annotated check-list of plankton algae from the Oslofjord, Norway (1951–1972). Norwegian Journal of Botany 20, 1319.Google Scholar
Hobson, L. A. 1989. Paradox of the phytoplankton – an overview. Biological Oceanography 6, 493504.Google Scholar
Holligan, P. M. & Harbour, D. S. 1977. The vertical distribution and succession of phytoplankton in the western English Channel in 1975 and 1976. Journal of the Marine Biological Association of the United Kingdom 57, 1075–93.CrossRefGoogle Scholar
Hunt, H. G. 1968. Continuous plankton records: Contributions towards a plankton atlas of the North-Eastern Atlantic and the North Sea. Part XI: the seasonal and annual distributions of Thaliacea. Bulletins of Marine Ecology 6, 225–49.Google Scholar
Hutchinson, G. E. 1961. The paradox of plankton. American Naturalist 95, 137–45.Google Scholar
Jacobson, D. M. & Anderson, D. M. 1986. Thecate heterotrophic dinoflagellates: feeding behaviour and mechanisms. Journal of Phycology 22, 249–58.Google Scholar
Joint, I. R. & Pomroy, A. J. 1981. Primary production in a turbid estuary. Estuarine, Coastal and Shelf Science 13, 303–16.CrossRefGoogle Scholar
Jones, K. J. 1979. Studies on nutrient levels and phytoplankton growth in a Scottish sealoch. PhD thesis, University of Strathclyde, 390 pp.Google Scholar
Jones, K. J. & Gowen, R. J. 1990. Influence of stratification and irradiance regime on summer phytoplankton composition in coastal and shelf seas of the British Isles. Estuarine, Coastal and Shelf Science 30, 557–67.Google Scholar
Jones, K. J., Gowen, R. J. & Tett, P. 1984. Water-column structure and summer phytoplankton distribution in the Sound of Jura. Journal of Experimental Marine Biology and Ecology, 78, 269–89.Google Scholar
Jones, K. J., Ayres, P., Bullock, A. M., Roberts, R. J. & Tett, P. 1982. A red tide of Gyrodinium aureolum in sealochs of the Firth of Clyde and associated mortality of pond-reared salmon. Journal of the Marine Biological Association of the United Kingdom 62, 771–82.Google Scholar
Kennaway, G. M. A., Tett, P. & Lucas, I. A. N. 1992. Dinoflagellates as grazers of phytoplankton (abstract). British Phycological Journal 27, 95.Google Scholar
Klaveness, D. 1988. Ecology of the Cryptomonadida: a first review. In Growth and reproductive strategies of freshwater phytoplankton, pp. 105–33, ed. Sandgren, C. D. Cambridge University Press.Google Scholar
Koehl, M. A. R. 1984. Mechanisms of particle capture by copepods at low Reynolds numbers: possible modes of selective feeding. In Trophic interaction within aquatic ecosystems, pp. 135–66, ed. Meyers, D. G. & Strickler, J. R. Washington: Association for the Advancement of Science.Google Scholar
Krebs, C. J. 1988. The message of ecology. New York: Harper & Row.Google Scholar
Lewis, J. 1988. Cysts and sediments: Gonyaulax polyedra (Lingulodinium machaerophorum) in Loch Creran. Journal of the Marine Biological Association of the United Kingdom 68, 701–14.CrossRefGoogle Scholar
Lewis, J., Tett, P. & Dodge, J. D. 1985. The cyst-theca cycle of Gonyaulax polyedra (Lingulodinium machaerophorum) in Creran, a Scottish west-coast sea-loch. In Toxic Dinoflagellates, pp. 8590, ed. Anderson, D. S., White, A. W. & Baden, D. G. Amsterdam: Elsevier.Google Scholar
Lewis, J. M. 1985. The ecology and taxonomy of marine dinoflagellates in Scottish sealochs. PhD thesis, University of London. 294 pp.Google Scholar
Lindahl, O. & Hernroth, L. 1983. Phyto-zooplankton community in coastal waters of western Sweden – an ecosystem off balance? marine Ecology – Progress Series 10, 119–26.CrossRefGoogle Scholar
Macdonald, R. 1927. Food and habits of Meganyctiphanes norvegica. Journal of the Marine Biological Association of the United Kingdom 14, 753–84.Google Scholar
Macdonald, R. 1928. The life history of Thysanoessa raschii. Journal of the Marine Biological Association of the United Kingdom 15, 5779.Google Scholar
Mackay, D. W. & Halcrow, W. 1976. The distribution of nutrients in relation to water movements in the Firth of Clyde. In Freshwater on the sea, pp. 109–17, eds. Skreslet, S., Leinebo, R., Matthews, J. B. L. & Sakshaug, E. Oslo: Association of Norwegian Oceanographers.Google Scholar
Mackay, D. W. & Leatherland, T. M. 1976. Chemical processes in an estuary receiving major inputs of industrial and domestic waste. In Estuarine Chemistry, pp. 185218, eds. Burton, J. D. & Liss, P. S. London: Academic Press.Google Scholar
M. A. F. F. 1981. Atlas of the seas around the British Isles. Lowestoft: Ministry of Agriculture, Fisheries and Food.Google Scholar
Margalef, R. 1978. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1, 493509.Google Scholar
Marshall, S. M. 1925. A survey of Clyde plankton. Proceedings of the Royal Society of Edinburgh 45, 117–41.CrossRefGoogle Scholar
Marshall, S. M. 1949. On the biology of the small copepods in Loch Striven. Journal of the Marine Biological Association of the United Kingdom 28, 45122.Google Scholar
Marshall, S. M. 1973. Respiration and feeding in copepods. Advances in Marine Biology 11, 57120.Google Scholar
Marshall, S. M. & Orr, A. P. 1927. The relation of the plankton to some physical and chemical factors in the Clyde Sea area. Journal of the Marine Biological Association of the United Kingdom 14, 837–68.CrossRefGoogle Scholar
Marshall, S. M. & Orr, A. P. 1930. A study of the spring diatom increase in Loch Striven. Journal of the Marine Biological Association of the United Kingdom 16, 853–78.CrossRefGoogle Scholar
Marshall, S. M., Nicholls, A. G. & Orr, A. P. 1934. On the biology of Calanus finmarchicus. V. Seasonal distribution, size, weight and chemical composition in Loch Striven in 1933, and their relation to the phytoplankton. Journal of the Marine Biological Association of the United Kingdom 19, 793819.CrossRefGoogle Scholar
Matthews, J. B. L. 1967. Calanus finmarchicus s.l. in the North Atlantic. The relationships between Calanus finmarchicus s.str, C. glacialis and C. helgolandicus. Bulletins of Marine Ecology 6, 159–79.Google Scholar
Matthews, J. B. L. & Heimdal, B. R. 1980. Pelagic productivity and food chains in fjord systems. In Fjord oceanography, pp. 377–98, eds. Freeland, D. H., Farmer, D. M. & Levings, C. D. New York: Plenum.Google Scholar
Mauchline, J. 1960. The biology of the euphausiid crustacean “Meganyctiphanes norvegica” (M.Sars). Proceedings of the Royal Society of Edinburgh 67B, 141–79.Google Scholar
Mauchline, J. 1965. Wandering euphausiids. Limnology and Oceanography 10, 300.Google Scholar
Mauchline, J. 1966. The biology of Thysanoessa raschii (M.Sars), with a comparison of its diet with that of Meganyctiphanes norvegica (M.Sars). In Some contemporary studies in marine science, pp. 495510, ed. Barnes, H. London: George Allen & Unwin.Google Scholar
Mauchline, J. 1971. Seasonal occurrence of mysids [Crustacea] and evidence of social behaviour. Journal of the Marine Biological Association of the United Kingdom 51, 809–25.Google Scholar
Medlin, L. K., Elwood, H. J., Stickel, S. & Sogin, M. L. 1991. Morphological and genetic variation within the diatom Skeletonema costatum (Bacillariophycéae): evidence for a new species, Skeletonema pseudocostatum. Journal of Phycology 27, 514–24.Google Scholar
Officer, C. B. & Ryther, J. H. 1980. The possible importance of silicate in marine eutrophication. Marine Ecology – Progress Series 3, 8391.CrossRefGoogle Scholar
Phillips, O. M. 1973. The equilibrium and stability of simple marine biological systems. I. Primary nutrient consumers. American Naturalist 107, 7393.CrossRefGoogle Scholar
Pingree, R. D., Holligan, P. M. & Mardell, G. T. 1978. The effects of vertical stability on phytoplankton distributions in the summer on the north western European shelf. Deep Sea Research 25, 1011–28.Google Scholar
Pingree, R. D., Holligan, P. M., Mardell, G. T. & Head, R. N. 1976. The influence of physical stability on spring, summer and autumn phytoplankton blooms in the Celtic Sea. Journal of the Marine Biological Association of the United Kingdom 56, 845–73.Google Scholar
Pingree, R. D., Maddock, L. & Butler, E. I. 1977. The influence of biological activity and physical stability in determining the chemical distributions of inorganic phosphate, silicate and nitrate. Journal of the Marine Biological Association of the United Kingdom 57, 1065–73.Google Scholar
Rae, B. B., Johnston, R. & Adams, J. A. 1965. The incidence of dead and dying fish in the Moray Firth, September 1963. Journal of the Marine Biological Association of the United Kingdom 45, 2947.CrossRefGoogle Scholar
Rice, D. W. & Harrison, F. L. 1978. Copper sensitivity of pacific herring, Clupea harenguspallasi, during its early life history. Fishery Bulletin 76, 347–56.Google Scholar
Richardson, K., Heath, M. R., & Pedersen, S. M. 1986. Studies of a larval herring (Clupea harengus L.) patch in the Buchan area. III. Phytoplankton distribution and primary productivity in relation to hydrographic features. Dana 6, 2536.Google Scholar
Ridley, M. 1985. The problems of evolution. Oxford: Oxford University Press.Google Scholar
Riley, G. A. 1946. Factors controlling phytoplankton populations on Georges Bank. Journal of Marine Research 6, 5473.Google Scholar
Ryther, J. H & Dunstan, W. M. 1971. Nitrogen, phosphorus and eutrophication in the inshore marine environment. Science 171, 1008–13.CrossRefGoogle Scholar
Sako, Y., ChangHoon, K., Ninomiya, H., Adachi, M. & Ishida, Y. 1990. Isozyme and cross analysis of mating populations in the Alexandrium catanella/tamarense species complex. In toxic marine phytoplankton, pp. 320–3, eds. Graneli, E., Sundstroem, B., Edler, L. & Anderson, .Google Scholar
Sars, G. O. 1903. An account of the Crustacea of Norway. IV. Copepoda, Calanoida. Bergen Museum, Bergen, 171 pp + (in separate volume) 108 plates.Google Scholar
Sherr, E. B., Sherr, B. F. & McDaniel, J. 1991. Clearance rates of <6 μm fluorescently labelled algae (FLA) by estuarine protozoa: potential grazing impact of flagellates and ciliates. Marine Ecology – Progress Series, 69, 8192.Google Scholar
Sieburth, J. McN., Smetacek, V. & Lenz, J. 1978. Pelagic ecosystem structure: heterotrophic compartments of plankton and their relationship to plankton size fractions. Limnology and Oceanography 23, 1256–63.Google Scholar
Simpson, J. H. & Hill, A. E. 1986. The Scottish Coastal Current. In The role of freshwater outflow in coastal marine ecosystems, pp. 195204, ed. Skreslet, S. NATO ASI Series, Vol. G7. Berlin: Springer-Verlag.Google Scholar
Simpson, J. H., Edelsten, D. J., Edwards, A., Morris, N. G. C. & Tett, P. B. 1979. The Islay Front: physical structure and phytoplankton distribution. Estuarine and Coastal Marine Science 9, 713–26.Google Scholar
Slobodkin, L. B. & Sanders, H. L. 1969. On the contribution of environmental unpredictability to species diversity. Brookhaven Symposia in Biology 22, 8293.Google Scholar
Stabile, J. E., Gallacher, J. C. & Wurtzel, E. T. 1990. Molecular analysis of intraspecific variation in the marine diatom Skeletonema costatum. Biochemical Systematics and Ecology 18, 59.CrossRefGoogle Scholar
Steele, J. H. & Baird, I. E. 1961. Relations between primary production, chlorophyll and particulate carbon. Limnology and Oceanography 6, 6878.Google Scholar
Sverdrup, H. U. 1953. On conditions for the vernal blooming of phytoplankton. Journal du Conseil international pour l'Exploration de la Mer 18, 287–95.CrossRefGoogle Scholar
Swedmark, M. & Granmo, A. 1981. Effects of mixtures of heavy metals and a surfactant on the development of cod (Gadus morhua L.). Rapport et Procès-verbaux des Réunions, Conseil international pour l'Exploration de la Mer 178, 95103.Google Scholar
Taylor, C. J. L. 1987. The zooplankton of the Forth, Scotland. Proceedings of the Royal Society of Edinburgh 93B, 377–88.Google Scholar
Tett, P. 1969. Dinoflagellate bioluminescence. PhD thesis, University of Glasgow, 352 pp.Google Scholar
Tett, P. 1973. The use of log-normal statistics to describe phytoplankton populations from the Firth of Lorne area. Journal of Experimental Marine Biology and Ecology 11, 121–36.CrossRefGoogle Scholar
Tett, P. 1980. Phytoplankton and the fish kills in Loch Striven. Scottish Marine Biological Association Internal Reports, 25, Oban: SMBA.Google Scholar
Tett, P. 1987a. Modelling the growth and distribution of marine microplankton. In: Society for General Microbiology Symposium 41, Ecology of Microbial Communities, pp. 387425. Cambridge: Cambridge University Press.Google Scholar
Tett, P. 1987b. Plankton. In Biological survey of estuaries and coasts, pp. 280341, eds. Baker, J. & Wolff, W. J. Cambridge: Cambridge University Press.Google Scholar
Tett, P. 1990. The photic zone. In Light and life in the sea, pp. 5987, eds. Herring, P. J., Campbell, A. K., Whitfield, M. & Maddock, L. Cambridge: Cambridge University Press.Google Scholar
Tett, P. & Edwards, A. 1984. Mixing and plankton: an interdisciplinary theme in oceanography. Oceanography and Marine Biology, an Annual Review, 22, 99123.Google Scholar
Tett, P. & Grantham, B. 1980. Variability in sea-loch phytoplankton. In Fjord oceanography, pp. 435–8, eds. Freeland, D. H., Farmer, D. M. & Levings, C. D. New York: Plenum.Google Scholar
Tett, P. & Mills, D. 1991. The plankton of the North Sea – pelagic ecosystems under stress? Ocean and Shoreline Management 16, 233–57.CrossRefGoogle Scholar
Tett, P. & Wallis, A. 1978. The general annual cycle of chlorophyll standing crop in Loch Creran. Journal of Ecology 66, 227–39.Google Scholar
Tett, P., Drysdale, M. & Shaw, J. 1981. Phytoplankton in Loch Creran during 1979, and its effects on the rearing of Oyster larvae. Scottish Marine Biological Association Internal Reports 52. Oban: SMBA.Google Scholar
Tett, P., Heaney, S. I. & Droop, M. R. 1985. The Redfield ratio and phytoplankton growth rate. Journal of the Marine Biological Association of the United Kingdom 65, 487504.CrossRefGoogle Scholar
Tett, P., Edwards, A., Grantham, B., Jones, K. & Turner, M. 1988. Microplankton dynamics in an enclosed coastal water column in summer. In Algae and the aquatic environment (Contributions in honour of J. W. G. Lund F. R. S.), pp. 339–68, ed. Round, F. E. Bristol: Biopress.Google Scholar
Tett, P., Gowen, R., Grantham, B., Jones, K. & Miller, B. S. 1986. The phytoplankton ecology of the Firth of Clyde sealochs Striven and Fyne. Proceedings of the Royal Society of Edinburgh 90B, 223–38.Google Scholar
Tett, P. B. 1971. The relation between dinoflagellates and the bioluminescence of sea water. Journal of the Marine Biological Association of the United Kingdom 51, 183206.Google Scholar
Tett, P. 1972. An annual cycle of flash induced luminescence in the euphausiid Thysanoessa raschii. Marine Biology 12, 207–18.Google Scholar
Turner, M. F. & Gowen, R. J. 1984. Some aspects of the nutrition and taxonomy of fourteen small green and yellow-green algae. Botanica Marina 27, 249–55.Google Scholar
Tyler, I. D. 1983. A carbon budget for Creran, a Scottish sealoch. PhD thesis, University of Strathclyde, 202 pp.Google Scholar
Wood, B. J. B., Tett, P. B. & Edwards, A. 1973. An introduction to the phytoplankton, primary production and relevant hydrography of Loch Etive. Journal of Ecology 61, 569–85.Google Scholar
Wren, S. B. 1991. Small zooplankton in Loch Striven, May-June, 1990. MSc dissertation, University of Wales, Bangor, 110 pp.Google Scholar