Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T11:46:11.598Z Has data issue: false hasContentIssue false

The application of monoclonal antibodies to the typing and isolation of lymphoreticular cells

Published online by Cambridge University Press:  05 December 2011

Peter C. L. Beverley
Affiliation:
I.C.R.F. Human Tumour Immunology Group, School of Medicine, University College London, Faculty of Clinical Sciences, University Street, London WC1E 6JJ
Get access

Synopsis

We have analysed the specificity of monoclonal antibodies to human leucocyte subsets by three methods. The distribution of antigen bearing cells has been studied in frozen tissue sections of lymphoid and other tissues by immunofluorescence or immunoenzymatic methods. The cellular distribution of antigen has been compared with existing well established markers and the function of antigen bearing cells has been studied by separation and assay in in vitro model systems. Antibodies characterised in this way may yield useful information when applied to clinical problems.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beverley, P. C. L. and Callard, R. E. 1981a. Distinctive functional characteristics of human “T” lymphocytes denned by E rosetting or a monoclonal anti-T cell antibody. Eur. J. Immun. 11, 329334.Google Scholar
Beverley, P. C. L. and Callard, R. E. 1981b. Re-definition of human T cells by monoclonal antibodies. Protides of the Biological Fluids. Vol. XXIX (in press).Google Scholar
Breard, J., Reinherz, E. L., Kung, P. C., Goldstein, G. and Schlossman, S. F. 1980.A monoclonal antibody reactive with human peripheral blood monocytes. J. Immun. 124, 19431945.Google Scholar
Burns, G. F., Cawley, J. C., Worman, C. P., Karpas, A., Barker, C. R. Goldstone, A. H. and Hayhoe, F. G. J. 1978. Multiple heavy chain isotypes on the surface on the cells of hairy-cell leukaemia. Blood 52, 11321146.CrossRefGoogle Scholar
Callard, R. E. 1979. Specific in vitro antibody response to influenza virus by human blood lymphocytes. Nature, Lond. 282, 734736.Google Scholar
Callard, R. E. and Smith, C. M. 1981. Histocompatibility requirements for T cell help in specific in vitro antibody responses to influenza virus by human blood lymphocytes. Eur. J. Immun. 11, 206212.Google Scholar
Callard, R. E., Smith, C. M. Worman, C., Linch, D., Cawley, J. C. and Beverley, P. C. L. 1981. Unusual phenotype and function of an expanded subpopulation of T cells in patients with haemopietic disorders. Clin. Exp. Immun. 43, 497505.Google Scholar
Cawley, J. C. and Burns, G. 1980. The cytochemistry of human lymphoreticular cells. Immun. Today 1, 8590.CrossRefGoogle Scholar
Cawley, J. C., Burns, G. F., Nash, T. A., Higgy, K. E., Child, J. A. and Roberts, B. E. 1978. Hairy cell leukaemia with T-cell features. Blood 51, 6169.Google Scholar
Crawford, D. H., Brickell, P., Tidman, N., McConnell, I., Hoffbrand, A. V. and Janossy, G. 1981. Increased numbers of cells with suppressor T cell phenotype in the peripheral blood of patients with infectious mononucleosis. Clin. Exp. Immun. 43, 291297.Google ScholarPubMed
Evans, R. L., Breard, J. M.. Lazarus, H., Schlossman, S. F. and Chess, L. 1977. Detection, isolation and functional characterisation of two human T cell subclasses bearing unique differentiation antigens. J. Exp. Med. 145, 221235.CrossRefGoogle Scholar
Janossy, G., Tidman, N., Selby, W. S., Thomas, J. A., Granger, S., Kung, P. C. and Goldstein, G. 1980. Human T lymphocytes of inducer and suppressor type occupy different microenvironment. Nature, Lond. 288, 8184.CrossRefGoogle Scholar
Kaplan, M. E. and Clark, C. 1974. An improved rosetting assay for detection of human T lymphocytes. J. Immun. Meth. 5, 131137.CrossRefGoogle ScholarPubMed
Koski, I. R., Poplack, D. G. and Blaese, R. M. 1976. In In vitro methods in cell-mediated and tumor immunity, ed. Bloom, B. R. and David, J. R., p. 359. New York: Academic Press.Google Scholar
Kung, P. C., Goldstein, G., Reinherz, E. L. and Schlossman, S. F. 1979. Monoclonal antibodies defining distinctive human T cell surface antigens. Science, N.Y. 206, 347349.CrossRefGoogle ScholarPubMed
Ledbetter, J. A., Lipinski, M., Cunningham-Rundles, C., Good, R. A. and Herzenberg, L. A. 1981. Evolutionary conservation of surface molecules that distinguish T lymphocyte helper/inducer and cytotoxic/suppressor subpopulations in mouse and man. J. Exp. Med. 153, 310323.Google Scholar
Linch, D. C., Cawley, J. C., Worman, C. P., Galvin, M. C., Roberts, B. E., Callard, R. E. and Beverley, P. C. L. 1981a. Abnormalities of T-cell subsets in patients with neutropenia and an excess of lymphocytes in the bone marrow. Br. J. Haemal. 48, 137145.CrossRefGoogle Scholar
Linch, D. C., Cawley, J. C., MacDonald, S. M, Masters, G., Roberts, B. E., Antonis, A. H., Waters, A. K., Sieff, C. and Lydyard, P. M. 1981b. Acquired pure red-cell aplasia associated with an increase of T cells bearing receptors for the Fc of IgG. Acta Haemal. 65, 270274.CrossRefGoogle ScholarPubMed
Mason, D. Y. and Sammons, R. E. 1978. Alkaline phosphatase and peroxidase for double immunoenzymatic labelling of cellular constituents. J. Clin. Path. 31, 454460.CrossRefGoogle ScholarPubMed
Moretta, L., Webb, S. R., Grossi, C. E., Lydyard, P. M. and Cooper, M. D. 1977. Functional analysis of two human T-cell subpopulations: help and suppression of B-cell responses by T cells bearing receptors for IgM or IgG. J. Exp. Med. 146, 184191.Google Scholar
Poppema, S., Bhan, A. K.. Reinherz, E., McCluskey, R. T. and Schlossman, S. H. 1981. Distribution of T cell subsets in human lymph nodes. J. Exp. Med. 153, 3041.CrossRefGoogle ScholarPubMed
Reinherz, E. L. and Schlossman, S. F. 1980. The differentiation and function ot human T lymphocytes. Cell 19, 821827.CrossRefGoogle Scholar
Reinherz, E. L., Kung, P. C., Goldstein, G. and Schlossman, S. F. 1979a. Separation of functional subsets of human T cells by a monoclonal antibody. Proc. Natn Acad. Sci. U.S.A. 76, 4061.CrossRefGoogle Scholar
Reinherz, E. L., Kung, P. C., Goldstein, G. and Schlossman, S. F. 1979b. Further characterization of the human inducer T cell subset defined by monoclonal antibody. J. Immun. 123, 28942896.Google Scholar
Reinherz, E. L., Moretta, L., Roper, M., Breard, J. M., Mingari, M. C., Cooper, M. D. and Schlossman, S. F. 1980a. Human T lymphocyte subpopulations defined by Fc receptors and monoclonal antibodies. A comparison. J. Exp. Med. 151, 969975.CrossRefGoogle Scholar
Reinherz, E. L., Kung, P. C., Goldstein, G. and Schlossman, S. F. 1980b. A monoclonal antibody reactive with the human cytotoxic/suppressor T cell subset previously denned by a heteroantiserum termed TH2. J. Immun. 124, 13011307.Google Scholar
Reinherz, E. L.. Weiner, H. L., Hauser, S. L., Cohen, J. A., Distaso, J. A. and Schlossman, S. F. 1980c. Loss of suppressor T cells in active multiple sclerosis. New Engl. J. Med. 303. 125129.CrossRefGoogle ScholarPubMed
Rower, D. J., Isenberg, D. A., McDougall, J. and Beverley, P. C. L. 1981. Characterization of polymyositis infiltrates using monoclonal antibodies to human leucocyte antigens. Clin. Exp. Immun. 45, 290298.Google Scholar
Strelkauskas, A. J., Schauf, V., Wilson, B. S., Chess, L. and Schlossman, S. F. 1978. Isolation and characterisation of naturally occurring subclasses of peripheral blood T cells with regulatory functions. J. Immun. 120. 12781288.CrossRefGoogle Scholar
Zanders, E. D., Smith, C. M. and Callard, R. E. 1981. A micromethod for the induction and assay of specific in vitro antibody responses by human lymphocytes. J. Immun. in press.CrossRefGoogle Scholar