Skip to main content Accessibility help
×
Home

Weighted Poincaré inequalities and Minkowski content

  • D. E. Edmunds (a1) and R. Hurri-Syrjänen (a2)

Abstract

Weighted Poincaré inequalities are established in any bounded domain D in ℝn (n ≧ 2), and their connection with the Minkowski content of ∂D is explored.

Copyright

References

Hide All
1Chanillo, S. and Wheeden, R.. Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions. Amer. J. Math. 107 (1985), 1191–226.
2Chanillo, S. and Wheeden, R.. Poincaré inequalities for a class of non-Ap weights. Indiana Math. J. 41 (1992), 605–24.
3Edmunds, D. E. and Opic, B.. Weighted Poincaré and Friedrichs inequalities. J. London Math. Soc. 47 (1993), 79–91.
4Fabes, E., Kenig, C. and Serapioni, R.. The local regularity of solutions of degenerate elliptic equations. Comm. Partial Differential Equations 7 (1982), 77116.
5Hurri, R.. Poincaré domains in ℝn. Ann. Acad. Sci. Venn. Ser. A I Math. Dissertationes 71 (1988), 142.
6Hurri, R.. The weighted Poincaré inequalities. Math. Scand. 67 (1990), 145–60.
7Hurri-Syrjänen, R.. An improved Poincaré inequality. Proc. Amer. Math. Soc. 120 (1994), 213–22.
8Koskela, P.. Natural weights for the Poincaré inequality. Proc. Finnish-Polish Summer School 1992.
9Martio, O. and Vuorinen, M.. Whitney cubes, p-capacity and Minkowski content. Exposition. Math. 5 (1987), 1740.
10Sawyer, E. and Wheeden, R.. Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Amer. J. Math. 114 (1992), 813–74.
11Smith, W. and Stegenga, D.. Exponential integrability of the quasi-hyperbolic metric on Hölder domains. Ann. Acad. Sci. Fenn. Ser. A I Math. 16 (1991), 345–60.
12Stein, E. M.. Singular Integrals and Differentiability Properties of Functions (Princeton: Princeton University Press, 1970).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed