Skip to main content Accessibility help

Units of indefinite quaternion algebras

  • J. H. H. Chalk (a1)


If ℍ is a rational indefinite quaternion algebra and T is an order of ℍ, let G+(T) denote the subgroup of units uT with norm n(u) = + 1. For a certain class of orders, Eichler has determined the measure μ(G+(T)) of G+(T), viewed as a Fuchsian group. This is extended to arbitrary orders by methods depending only upon classical number-theory and group theory. As an application, an estimate of the magnitude of a small non-trivial solution of the diophantine Pellian equation

is supplied and the restrictions on the integers D and P associated with previous work on this question are eliminated.



Hide All
1Bachmann, P.. Die Arithmetic der Quadratischen Formen, Erste Abteilung (Leipzig, 1925).
2Chalk, J. H. H.. An estimate for the fundamental solutions of a generalized Pell equation. Math. Ann. 132 (1956), 263276.
3Chalk, J. H. H.. Quelques équations de Pell generalisées. CR. Acad. Sci. Paris Sér. A-B 244 (1957), 985988.
4Chalk, J. H. H.. The number of solutions of congruences in incomplete residue systems. Canad. J. Math. 15 (1963), 291298.
5Davenport, H.. Cubic forms in 32 variables. Philos. Trans. Roy. Soc. London Ser. A 251 (1959), 193232.
6Eichler, M.. Lectures on Modular Correspondences. (Bombay: Tata Institute, 1955–56), re-issued 1965.
7Eichler, M.. Allgemeine Kongruenzklasseneinteilungen der Ideale einfacher Algebren über algebraischen Zahlkörpern und ihre L-Reihen. J. Reine Angew. Math. 179 (1938), 227251.
8Estermann, T.. A new application of the Hardy-Littlewood-Kloosterman method. Proc. London Math. Soc. 12 (1962), 425444.
9Hey, Frl.K.. Analytische Zahlentheorie in Systemen hyperkomplexer Zahlen (Dissertation, Hamburg, 1929).
10Mordell, L. J.. On the number of solutions in incomplete residue sets of quadratic congruences. Arch. Math. 8 (1957), 153157.
11Siegel, C. L.. Topics in Complex Function Theory, II (New York: Wiley-Interscience, 1971).
12Siegel, C. L.. Some remarks on discontinuous groups. Ann. of Math. 46 (1945), 708718 (Theorem 5).
13Vigneras, M.-F.. Quaternions. Lecture Notes in Mathematics 800 (Berlin: Springer, 1980).
14Tsuji, M.. Theory of Fuchsian groups. Japan J. Math. 21 (1951), 127, (cf. Theorem 1 and footnote).
15Watson, G. L.. Representation of Integers by Indefinite Quadratic Forms. Mathematika 2 (1955), 3238.
16Watson, G. L.. Quadratic diophantine equations. Philos. Trans. Roy. Soc. London Ser. A 253 (1960), 227254.

Units of indefinite quaternion algebras

  • J. H. H. Chalk (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed