Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T23:30:08.832Z Has data issue: false hasContentIssue false

Travelling-waves for the FKPP equation via probabilistic arguments

Published online by Cambridge University Press:  14 November 2011

Simon C. Harris
Affiliation:
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK

Abstract

We outline a completely probabilistic study of travelling-wave solutions of the FKPP reaction-diffusion equation that are monotone and connect 0 to 1. The necessary asymptotics of such travelling-waves are proved using martingale and Brownian motion techniques. Recalling the connection between the FKPP equation and branching Brownian motion through the work of McKean and Neveu, we show how the necessary asymptotics and results about branching Brownian motion combine to give the existence and uniqueness of travelling waves of all speeds greater than or equal to the critical speed.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Asmussen, S. and Hering, H.. Branching processes. Progress in Probability and Statistics (Boston: Birkhäuser, 1983).Google Scholar
2Athreya, K. and Ney, P.. Branching processes (Springer, 1972).CrossRefGoogle Scholar
3Biggins, J. D.. Martingale convergence in the branching random walk. J. Appl. Prob. 14 (1977), 2537.Google Scholar
4Biggins, J. D.. Growth rates in the branching random walk. Z. Wahr. 48 (1979), 1734.Google Scholar
5Biggins, J. D.. Uniform convergence of martingales in the branching random walk. Ann. Prob. 20 (1992), 137151.CrossRefGoogle Scholar
6Bramson, M. D.. Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31 (1978), 531581.CrossRefGoogle Scholar
7A. Champneys, Harris, S. C., Toland, J. F., Warren, J. and Williams, D.. Analysis, algebra and probability for a coupled system of reaction-diffusion equations. Phil. Trans. R. Soc. Lond. A 350 (1995), 69112.Google Scholar
8Chauvin, B.. Product martingales and stopping lines for branching Brownian motion. Ann. Prob. 19 (1991), 11961205.CrossRefGoogle Scholar
9Elworthy, K. D., Truman, A., Zhao, H. Z. and Gaines, J. G.. Approximate travelling waves for generalised KPP equations and classical mechanics. Proc. R. Soc. Lond. A 446 (1994), 529554.Google Scholar
10Fisher, R. A.. The wave of advance of an advantageous gene. Ann. Eugenics 7 (1937), 353369.CrossRefGoogle Scholar
11Friedlin, M.. Functional integration and partial differential equations. Annals of Mathematics Series, vol. 109 (Princeton University Press, 1985).Google Scholar
12Harris, S. C. and Williams, D.. Large-deviations and martingales for a typed branching diffusion. I. Astérisque 236 (1996), 133154.Google Scholar
13Kolmogorov, A. N., Petrowski, I. and Piscounov, N.. Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un probleme biologique. Mosc. Univ. Bull. Math. 1 (1937), 125.Google Scholar
14McKean, H. P.. Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov. Commun. Pure Appl. Math. 28 (1975), 323331.CrossRefGoogle Scholar
15McKean, H. P.. Correction to the above. Commun. Pure Appl. Math. 29 (1976), 553554.CrossRefGoogle Scholar
16Neveu, J.. Multiplicative martingales for spatial branching processes. Seminar on stochastic processes (ed. Çinlar, E., Chung, K. L and Getoor, R. K.). Prog. Prob. Statist. 15, 223241 (Boston: Birkhauser, 1987).Google Scholar
17Rogers, L. C. G. and Williams, D.. Diffusions, Markov processes and martingales, vol. 1. Foundations (new edn) (Chichester and New York: Wiley, 1994).Google Scholar
18Rogers, L. C. G. and Williams, D.. Diffusions, Markov processes and martingales, vol. 2. ltôcalculus (Chichester and New York: Wiley, 1987).Google Scholar
19Shiga, T. and Watanabe, S.. Bessel diffusions as a one-parameter family of diffusion processes. Z. Wahr. verw. Geb. 27 (1973), 3746.CrossRefGoogle Scholar
20Uchiyama, K.. Brownian first exit and sojourn over a one-sided moving boundary and applications. Z. Wahr. 54 (1981), 75116.Google Scholar
21Uchiyama, K.. Spatial growth of a branching process of particles living in ℝd. Ann. Prob. 10 (1982), 896918.CrossRefGoogle Scholar
22Watanabe, S.. Limit theorems for a class of branching processes. In Markov processes and potential theory (ed. Chover, J.), pp. 205232 (New York: Wiley, 1967).Google Scholar
23Zhao, H. Z. and Elworthy, K. D.. The travelling wave solutions of scalar generalised KPP equation via classical mechanics and stochastic approaches. In Stochastics and quantum mechanics (ed. Truman, A. and Davies, I. M.), pp. 298316 (Singapore, New Jersey, London and Hong Kong: World Scientific, 1992).Google Scholar