Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T08:37:57.426Z Has data issue: false hasContentIssue false

Some remarks on quasiconvexity and rank-one convexity

Published online by Cambridge University Press:  14 November 2011

Pablo Pedregal
Affiliation:
ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain

Abstract

We explore some necessary conditions for quasiconvexity in an attempt to show that rank-one convexity does not imply quasiconvexity when the target space for deformations is two- dimensional. An interesting construction is presented, showing how rank-one directions may fit with each other, making the task harder than in higher dimensions.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Acerbi, E. and Fusco, N.. Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal. 86 (1984), 125–45.CrossRefGoogle Scholar
2Alibert, J. J. and Dacorogna, B.. An example of a quasiconvex function not polyconvex in dimension two. Arch. Rational Mech. Anal. 117 (1992), 55166.Google Scholar
3Ball, J. M.. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977), 337403.CrossRefGoogle Scholar
4Ball, J. M.. A version of the fundamental theorem for Young measures. PDE's and continuum models of phase transitions, Lecture Notes in Physics 344, eds Rascle, M., Serre, D. and Slemrod, M., 207–15 (Berlin: Springer, 1989).Google Scholar
5Ball, J. M.. Sets of gradients with no rank-one connections. J. Math. Pures Appl. 69 (1990), 241–59.Google Scholar
6Ball, J. M., Currie, J. C. and Olver, P. J.. Null Lagrangians, weak continuity, and variational problems of arbitrary order. J. Funct. Anal. 41 (1981), 135–74.Google Scholar
7Ball, J. M. and Murat, F.. W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984), 225–53.Google Scholar
8Chipot, M. and Kinderlehrer, D.. Equilibrium configurations of crystals. Arch. Rational Mech. Anal. 103 (1988), 237–77.CrossRefGoogle Scholar
9Dacorogna, B., Douchet, J., Gangbo, W. and Rappaz, J.. Some examples of rank-one convex functions in dimension two. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 135–50.CrossRefGoogle Scholar
10Dacorogna, B. and Marcellini, P.. A counterexample in the vectorial calculus of variations. In Material Instabilities in Continuum Mechanics, ed. Ball, J. M., 7783 (Oxford: Clarendon Press, 1988).Google Scholar
11Kinderlehrer, D. and Pedregal, P.. Characterizations of Young measures generated by gradients. Arch. Rational Mech. Anal. 115 (1991), 329–65.Google Scholar
12Knops, R. J. and Stuart, C. A.. Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity. Arch. Rational Mech. Anal. 86 (1984), 233–49.Google Scholar
13Kohn, R.. The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3 (1991), 193236.Google Scholar
14Morrey, Ch. B.. Quasiconvexity and the lower semiconductivity of multiple integrals. Pacific J. Math. 2 (1952), 2553.Google Scholar
15Morrey, Ch. B.. Multiple Integrals in the Calculus of Variations (Berlin: Springer, 1966).Google Scholar
16Murat, F.. Compacite par compensation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. Fis. Mat. (IV) 5 (1978), 489507.Google Scholar
17Parry, G. P.. On the planar rank-one convexity condition (Preprint, 1993).Google Scholar
18Pedregal, P.. Laminates and microstructure. European J. Appl. Math. 4 (1993), 121–49.Google Scholar
19Serre, D.. Formes quadratiques et calcul des variations. J. Math. Pures Appl. 62 (1983), 177–96.Google Scholar
20Sivaloganathan, J.. Implications of rank-one convexity. Ann. Inst. H. Poincare, Anal. Non lineaire 5 (1988), 99118.CrossRefGoogle Scholar
21Sverak, V.. Examples of rank-one convex functions. Proc. Roy. Soc. Edinburgh Sect. A 114 (1990), 237–42.Google Scholar
22Sverak, V.. Quasiconvex functions with subquadratic growth. Proc. Roy. Soc. London Ser. A 433 (1991), 723–5.Google Scholar
23Sverak, V.. Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 185–9.Google Scholar
24Tartar, L.. Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot-Watt Symposium, vol. IV, ed. Knops, R., Pitman Research Notes in Mathematics 39, 136212 (Harlow: Longman, 1979).Google Scholar
25Terpstra, F. J.. Die Darstellung der biquadratischen Formen als Summen von Quadraten mit Anwendung auf die Variationsrechnung. Math. Ann. 116 (1938), 166–80.Google Scholar