1Andrews, G. E.. The theory of partitions (Cambridge: Cambridge University Press, 1998).

2Babbage, C.. Demonstration of a theorem relating to prime numbers. Edinburgh Philos. J. 1 (1819), 46–49.

3Chowla, S., Dwork, B. and Evans, R.. On the mod *p* ^{2} determination of $(p-1)/2\choose (p-1)/4$. J. Number Theory (1986), 188–196. 4Gasper, G. and Rahman, M.. Basic hypergeometric series. 2nd Edn, Encyclopedia of Mathematics and its applications, vol. 96 (Cambridge: Cambridge University Press, 2004).

5Guo, V. J. W.. Some congruences related to the *q*-Fermat quotients. Int. J. Number Theory 11 (2015), 1049–1060.

6Guo, V. J. W.. Some generalizations of a supercongruence of van Hamme. Integral Transforms Spec. Funct. 28 (2017), 888–899.

8Guo, V. J. W.. A *q*-analogue of a Ramanujan-type supercongruence involving central binomial coefficients. J. Math. Anal. Appl. 458 (2018), 590–600.

9Koepf, W.. Hypergeometric summation, an Algorithmic approach to summation and special function identities, 2nd Edn (London: Springer, 2014).

10Liu, J., Pan, H. and Zhang, Y.. A generalization of Morley's congruence. Adv. Differ. Equ. 2015 (2015), 254.

11Long, L.. Hypergeometric evaluation identities and supercongruences. Pacific J. Math. 249 (2011), 405–418.

12Městrović, R.. Wolstenholme's theorem: its generalizations and extensions in the last hundred and fifty years (1862–2012), preprint, 2011, arXiv:1111.3057.

13Morley, F.. Note on the congruence 2^{4n}≡(−1)^{n} (2*n*)!/(*n*!)^{2}, where 2*n* + 1 is a prime. Ann. of Math. 9 (1895), 168–170.

14Mortenson, E.. A *p*-adic supercongruence conjecture of van Hamme. Proc. Amer. Math. Soc. 136 (2008), 4321–4328.

15Pan, H.. A *q*-analogue of Lehmer's congruence. Acta Arith. 128 (2007), 303–318.

16Pan, H.. An elementary approach to $(p-1)/2\choose (p-1)/4$ modulo *p* ^{2}. Taiwanese J Math. 16 (2012), 2197–2202. 17Petkovšek, M., Wilf, H. S. and Zeilberger, D.. *A* = *B* (Wellesley, MA: A K Peters, Ltd., 1996).

18Shi, L.-L. and Pan, H.. A *q*-analogue of Wolstenholme's harmonic series congruence. Amer. Math. Monthly 114 (2005), 529–531.

19Straub, A.. A *q*-analog of Ljunggren's binomial congruence, 23rd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2011). Discrete Math. Theor. Comput. Sci. Proc., AO, Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2011) 897–902.

20Sun, Z.-W.. Products and sums divisible by central binomial coefficients. Electron. J. Combin. 20 (2013), #P9.

21Swisher, H.. On the supercongruence conjectures of van Hamme. Res. Math. Sci. (2015) 2–18.

22Tauraso, R.. Some *q*-analogs of congruences for central binomial sums. Colloq. Math. 133 (2013), 133–143.

23van Hamme, L.. Some conjectures concerning partial sums of generalized hypergeometric series, *p*-adic functional analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math.,vol. 192 (New York: Dekker, 1997), 223–236.

24Wang, S.-D.. Generalizations of a supercongruence involving $\left( {\matrix{ {2k} \cr k \cr}} \right)^4$. J. Difference Equ. Appl. 24 (2018), 1375–1383. 25Wolstenholme, J.. On certain properties of prime numbers. Quart. J. Pure Appl. Math. 5 (1862), 35–39.

26Zudilin, W.. Ramanujan-type supercongruences. J. Number Theory 129 (2009), 1848–1857.