Skip to main content Accessibility help

A semilinear elliptic eigenvalue problem, II. The plasma problem

  • Grant Keady (a1) and John Norbury (a2)


This paper continues the study of the boundary value problem, for (λ, ψ)

Here δ denotes the Laplacian, k is a given positive constant, and λ1 will denote the first eigenvalue for the Dirichlet problem for −δ on Ω. For λ ≦ λ1, the only solutions are those with ψ = 0. Throughout we will be interested in solutions (λ, ψ) with λ > λ1 and with ψ > 0 in Ω.

In the special case Ω = B(0, R) there is a branch ℱe, of explicit exact solutions which bifurcate from infinity at λ = λ1 and for which the following conclusions are valid, (a) The set Aψ,

is simply-connected, (b) Along ℱe, ψmk, ‖ψ‖1 → 0 and the diameter of Aψ tends to zero as λ → ∞, where

Here it is shown that the above conclusions hold for other choices of Ω, and in particular, for Ω = (−a, a)×(−b, b). (Existence is settled in Part I, and elsewhere.)

The results of numerical and asymptotic calculations when Ω = (−a, a)×(−b, b) are given to illustrate both the above, and some limitations in the conclusions of our analysis.



Hide All
1Berestycki, H. and Brezis, H.. Sur certains problèmes de frontière libre. C.R. Acad. Sci. Paris 283 (1976), 10911094.
2Berger, M. S. and Fraenkel, L. E.. Nonlinear desingularization in certain free-boundary problems. Comm. Math. Phys. (1980), to appear.
3Brascamp, H. J. and Lieb, E. H.. On extensions of the Brunn-Minkowski and Prékopa-Leindler Theorems, including inequalities for log-concave functions, and with an application to the diffusion equation. J. Functional Analysis 22 (1976), 366389.
4Budden, P. J. and Norbury, J.. A nonlinear elliptic eigenvalue problem. J. Inst. Math. Appl. 24 (1979), 933.
5Courant, R. and Hilbert, D.. Methods of mathematical physics, Vol. II (New York: Interscience, 1962).
6Crooke, P. S. and Sperb, R. P.. Isoperimetric inequalities in a class of nonlinear eigenvalue problems. SIAM J. Math. Anal. 9 (1978), 671681.
7Damlamian, A.. Application de la dualite non-convexe à un problème nonlineare à frontière libre. C.R. Acad. Sci. Paris 286 (1978), 153155.
8Fraenkel, L. E.. On steady vortex rings of small cross-section in an ideal fluid. Proc. Roy. Soc. London Ser. A 316 (1970), 2962.
9Fraenkel, L. E. and Berger, M. S.. A global theory of steady vortex rings in an ideal fluid. Acta Math. 132 (1974), 1351.
10Fraenkel, L. E.. On Steiner symmetrization and a lower bound for electrostatic capacity in the plane, submitted for publication.
11Gallouet, T.. Quelques remarques sur une equation apparaissant en physique des plasmas. C.R. Acad. Sci. Paris 286 (1978), 739741.
12Hardy, G. H., Littlewood, J. E. and Polya, G.. Inequalities (Cambridge Univ. Press, 1934).
13Hille, E.. Analytic function theory, Vol. II (New York: Chelsea, 1962).
14Isaacson, E. and Keller, H. B.. Analysis of numerical methods (New York: Wiley, 1966).
15Keady, G. and Norbury, J.. A semilinear elliptic eigenvalue problem, I. Proc. Roy. Soc. Edinburgh Sect. A (1980), 87, 6582.
16Keller, H. B.. Numerical solution of bifurcation and nonlinear eigenvalue problems. In Applications of bifurcation theory (ed. P. H., Rabinowitz) (New York: Academic, 1976).
17Kinderlehrer, D., Nirenberg, L. and Spruck, J.. The shape and smoothness of stable plasma configurations, II, submitted for publication.
18Kinderlehrer, D. and Spruck, J.. The shape and smoothness of stable plasma configurations, I. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), 131150.
19Krasnoselskii, M. A.. Positive solutions of operator equations (Groningen: Noordhoff, 1964).
20Norbury, J.. Steady vortex pairs in an ideal fluid. Comm. Pure Appl. Math. 28 (1975), 679700.
21Osserman, R.. A note on Hayman's theorem on the bass note of a drum. Comment. Math. Helv. 52 (1977), 545555.
22Osserman, R.. The isoperimetric inequality. Bull. Amer. Math. Soc. 84 (1978), 11821238.
23Payne, L. E. and Philippin, G. A.. On some maximum principles involving harmonic functions and their derivatives. SIAM J. Math. Anal. 10 (1979), 96104.
24Payne, L. E. and Rayner, M. E.. An isoperimetric inequality for the first eigenfunction in the fixed membrane problem. Z. Angew. Math. Phys. 23 (1972), 1315.
25Payne, L. E. and Stakgold, I.. On the mean value of the fundamental mode in the fixed membrane problem. Applicable Anal. 3 (1973), 295306.
26Polya, G. and Szego, G.. Isoperimetric inequalities in mathematical physics (Princeton Univ. Press, 1951).
27Puel, J.. Un problème de valeurs propres nonlinéares et de frontière libre. C.R. Acad. Sci. Paris 284 (1977), 861863.
28Rabinowitz, P. H.. Some global results for nonlinear eigenvalue problems. J. Functional Analysis 7 (1971), 487513.
29Rado, T.. Sur la representation conforme des domaines variables. Acta Litt. Sect. Sci. Math., R. Univ. Hungar. Francisco-Josephina 1 (1923), 180186.
30Schaefer, P. W. and Sperb, R. P.. Maximum principles and bounds in some inhomogeneous elliptic boundary-value problems. SIAM J. Math. Anal. 8 (1977), 871878.
31Schaeffer, D. G.. Nonuniqueness in the equilibrium shape of a confined plasma. Comm. Partial Differential Equations 2 (1977), 587599.
32Teman, R.. Remarks on a free boundary value problem arising in plasma physics. Comm. Partial Differential Equations 2 (1977), 563583.

A semilinear elliptic eigenvalue problem, II. The plasma problem

  • Grant Keady (a1) and John Norbury (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed