Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-08T02:19:09.900Z Has data issue: false hasContentIssue false

Prime divisors of orders of products

Published online by Cambridge University Press:  15 January 2019

Alexander Moretó
Affiliation:
Departament de Matemàtiques, Universitat de València, 46100 Burjassot València, SPAIN (Alexander.Moreto@uv.es; Azahara.Saez@uv.es)
Azahara Sáez
Affiliation:
Departament de Matemàtiques, Universitat de València, 46100 Burjassot València, SPAIN (Alexander.Moreto@uv.es; Azahara.Saez@uv.es)

Abstract

Baumslag and Wiegold have recently proven that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. Motivated by this surprisingly new result, we have obtained related results that just consider sets of prime divisors of element orders. For instance, the first of our main results asserts that G is nilpotent if and only if π(o(xy)) = π(o(x)o(y)) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold Theorem. While this result is still elementary, we also obtain local versions that, for instance, characterize the existence of a normal Sylow p-subgroup in terms of sets of prime divisors of element orders. These results are deeper and our proofs rely on results that depend on the classification of finite simple groups.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Baumslag, B. and Wiegold, J.. A sufficient condition for nilpotency in a finite group. arXiv:1411.2877v1.Google Scholar
2Guralnick, R. M. and Tiep, P. H.. Lifting in Frattini covers and a characterization of finite solvable groups. J. die Reine Angewandte Math. 708 (2015), 4972.Google Scholar
3Hall, P.. Theorems like Sylow's. Proc. London Math. Soc. 6 (1956), 286304.Google Scholar
4Kappe, L-C., Mazur, M., Mendoza, G. and Ward, M. B.. On minimal non-p-closed groups and related properties. Publ. Math. Debrecen 78 (2011), 219233.Google Scholar
5Lee, H.. Triples in Finite Groups and a Conjecture of Guralnick and Tiep. PhD thesis. University of Arizona. 2017.Google Scholar
6Moretó, A.. Sylow numbers and nilpotent Hall subgroups. J. Algebra 379 (2013), 8084.Google Scholar
7Robinson, D. J. S.. A course in the theory of groups, 2nd edn (New York: Springer-Verlag Inc., 1996).Google Scholar
8Thompson, J. G.. Nonsolvable finite groups all of whose local subgroups are solvable. Bull. Am. Math. Soc. 74 (1968), 383437.Google Scholar
9Wielandt, H.. Zum Satz von Sylow. Math. Z. 60 (1954), 407408.Google Scholar