Hostname: page-component-5c6d5d7d68-xq9c7 Total loading time: 0 Render date: 2024-08-08T23:51:58.619Z Has data issue: false hasContentIssue false

Maximum and anti-maximum principles for singular Sturm–Liouville problems*

Published online by Cambridge University Press:  14 November 2011

M. Duhoux
Affiliation:
Institut de Mathématiques Pures et Appliquées, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium

Abstract

The maximum and anti-maximum principles are extended to the case of eigenvalue Sturm–Liouville problems

with boundary conditions of Dirichlet type (if possible) on a bounded interval [a, b]. The function r is assumed to be continuous and > 0 on ]a, b[, but the function 1/r is not necessarily integrable on [a, b]. The conditions on the functions p, m and h depend on the integrability or nonintegrability of 1/r on [a, c] and/or [c, b], for some c ∈ ]a, b[. The weight function m is not necessarily of constant sign.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Amann, H.. Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. Siam Rev. 18 (1976), 620709.CrossRefGoogle Scholar
2Brézis, H.. Analyse fonctionnelle, théorie et applications (Paris: Masson, 1983).Google Scholar
3Brown, R. F.. A topological introduction to nonlinear analysis (Boston: Birkhäuser, 1993).CrossRefGoogle Scholar
4Ph. Clément and Peletier, L. A.. An anti-maximum principle for second-order elliptic operators. J. Differential Equations 34 (1979), 218–29.Google Scholar
5Coster, C. De, Grossinho, M. R. and Habets, P.. On pairs of positive solutions for a singular boundary value problem. Appl. Anal. 59 (1995), 241–56.CrossRefGoogle Scholar
6Figueiredo, D. G. De. Positive solutions of semilinear elliptic problems. In Lecture Notesin Mathematics 957, pp. 3487 (Berlin: Springer, 1982).Google Scholar
7Hale, J. K.. Ordinary differential equations (New York: Wiley-Interscience, 1969).Google Scholar
8Hess, P.. An anti-maximum principle for linear elliptic equations with an indefinite weight function. J. Differential Equations 41 (1981), 369–74.CrossRefGoogle Scholar
9Hess, P. and Kato, T.. On some linear and nonlinear eigenvalue problems with an indefinite weight function. Comm. Partial Differential Equations 5 (1980), 9991030.CrossRefGoogle Scholar
10Kiguradze, I. T. and Lomtatidze, A. G.. On certain boundary value problems for second-order linear ordinary differential equations with singularities. J. Math. Anal. Appl. 101 (1984), 325–47.CrossRefGoogle Scholar
11Protter, M. H. and Weinberger, H. F.. Maximum principles in differential equations (Englewood Cliffs, NJ: Prentice-Hall, 1967).Google Scholar
12Sanchez, L.. Metodos da teoria de pontos criticos (Textos De Matematica, Universidade de Lisboa, Faculdade de Ciencias, Departamento de Matematica, 1993).Google Scholar
13Willem, M.. Analyse convexe et optimisation (Louvain-la-Neuve: CIACO, 1989).Google Scholar
14Willem, M.. Analyse harmonique reelle (Paris: Hermann, 1995).Google Scholar