Skip to main content Accessibility help
×
Home

Induction for locally compact quantum groups revisited

  • Mehrdad Kalantar (a1), Paweł Kasprzak (a2), Adam Skalski (a3) and Piotr M. Sołtan (a4)

Abstract

In this paper, we revisit the theory of induced representations in the setting of locally compact quantum groups. In the case of induction from open quantum subgroups, we show that constructions of Kustermans and Vaes are equivalent to the classical, and much simpler, construction of Rieffel. We also prove in general setting the continuity of induction in the sense of Vaes with respect to weak containment.

Copyright

References

Hide All
1Baaj, S. and Skandalis, G.. Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres. Ann. Sci. École Norm. Sup. (4) 26 (1993), 425488.
2Brannan, M., Daws, M. and Samei, E.. Completely bounded representations of convolution algebras of locally compact quantum groups. Münster J. Math. 6 (2013), 445482.
3Daws, M. and Salmi, P.. Completely positive definite functions and Bochner's theorem for locally compact quantum groups. J. Funct. Anal. 264 (2013), 15251546.
4Daws, M., Kasprzak, P., Skalski, A. and Sołtan, P. M.. Closed quantum subgroups of locally compact quantum groups. Adv. Math. 231 (2012), 34733501.
5De Commer, K.. Galois objects and cocycle twisting for locally compact quantum groups. J. Operator Theory 66 (2011), 59106.
6Kalantar, M., Kasprzak, P. and Skalski, A.. Open quantum subgroups of locally compact quantum groups. Adv. Math. 303 (2016), 322359.
7Kaniuth, E. and Taylor, K. F.. Induced representations of locally compact groups. Cambridge tracts in Mathematics, vol. 197 (Cambridge: Cambridge University Press, 2013).
8Kustermans, J.. Induced corepresentations of locally compact quantum groups. J. Funct. Anal. 194 (2002), 410459.
9Kustermans, J. and Vaes, S.. Locally compact quantum groups. Ann. Sci. École Norm. Sup. (4) 33 (2000), 837934.
10Lance, E. C.. Hilbert C*-modules. London Mathematical Society Lecture Note Series, vol. 210 (Cambridge: Cambridge University Press, 1995).
11Meyer, R., Roy, S. and Woronowicz, S. L.. Homomorphisms of quantum groups. Münster J. Math. 5 (2012), 124.
12Rieffel, M. A.. Induced representations of C*-algebras. Adv. Math. 13 (1974), 176257.
13Sołtan, P. M. and Woronowicz, S. L.. From multiplicative unitaries to quantum groups II. J. Funct. Anal. 252 (2007), 4267.
14Vaes, S.. The unitary implementation of a locally compact quantum group action. J. Funct. Anal. 180 (2001), 426480.
15Vaes, S.. A new approach to induction and imprimitivity results. J. Funct. Anal. 229 (2005), 317374.
16Vergnioux, R. and Voigt, C.. The K-theory of free quantum groups. Math. Ann. 357 (2013), 355400.
17Woronowicz, S. L.. Pseudospaces, pseudogroups and Pontriagin duality. In Mathematical problems in theoretical physics (Proc. Internat. Conf. Math. Phys., Lausanne, 1979), volume 116 of Lecture Notes in Phys., pp. 407412 (Berlin-New York: Springer 1980).

Keywords

MSC classification

Induction for locally compact quantum groups revisited

  • Mehrdad Kalantar (a1), Paweł Kasprzak (a2), Adam Skalski (a3) and Piotr M. Sołtan (a4)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed