Skip to main content Accessibility help
×
Home

Explicit asymptotics for certain single and double exponential sums

  • K. Kalimeris (a1) and A. S. Fokas (a2)

Abstract

By combining classical techniques together with two novel asymptotic identities derived in recent work by Lenells and one of the authors, we analyse certain single sums of Riemann-zeta type. In addition, we analyse Euler-Zagier double exponential sums for particular values of Re{u} and Re{v} and for a variety of sets of summation, as well as particular cases of Mordell-Tornheim double sums.

Copyright

References

Hide All
1Bourgain, J.. Decoupling, exponential sums and the Riemann zeta function. J. Am. Math. Soc. 30 (2017), 205224.
2Fokas, A. S.. A novel approach to the Lindelöf hypothesis, arXiv preprint, arXiv:1708.06607, 2018.
3Fokas, A. S. and Lenells, J.. On the asymptotics to all orders of the Riemann Zeta function and of a two-parameter generalization of the Riemann Zeta function, Memoirs of AMS, to appear.
4Ishikawa, H. and Matsumoto, K.. On the estimation of the order of Euler-Zagier multiple zeta-functions. Illinois J. Math. 47 (2003), 11511166.
5Kiuci, I. and Tanigawa, Y.. Bounds for double zeta functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (2006), 445464.
6Krätzel, E.. Lattice points (Oxford, UK: Springer, 1989).
7Titchmarsch, E.C.. On Epstein's Zeta-function. Proc. London Math. Soc. 2 (1934), 485500.
8Titchmarsch, E. C.. The theory of the Riemann Zeta-function, 2nd edn (Berlin/Heidelberg, Germany: Oxford University Press, 1987).

Keywords

MSC classification

Explicit asymptotics for certain single and double exponential sums

  • K. Kalimeris (a1) and A. S. Fokas (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed