Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T11:45:49.487Z Has data issue: false hasContentIssue false

Convergence criteria for Aronszajn's method and for the Bazley-Fox method

Published online by Cambridge University Press:  14 November 2011

R. D. Brown
Affiliation:
Department of Mathematics, University of Kansas, Lawrence, Kansas 66045, U.S.A.

Synopsis

Convergence criteria are derived for Aronszajn's method and for the Bazley-Fox C*C method applied to self-adjoint eigenvalue problems of the form Bx = λx. These criteria generalise previously used criteria and are seen to be, in a certain restricted sense, the best possible. The framework used is general enough to allow approximations where the intermediate problems are not finite dimensional perturbations of the base problem.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Aronszajn, N.. Approximation methods for eigenvalues of completely continuous symmetric operators. Proceedings of Symposium on Spectral Theory and Differential Equations, Stillwater, Oklahoma, 1951, 179202.Google Scholar
2Bazley, N. W.. Lower bounds for eigenvalues with application to the helium atom. Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 850853.CrossRefGoogle Scholar
3Bazley, N. W.. Lower bounds for eigenvalues with application to the helium atom. Phys. Rev. 129 (1960), 144149.CrossRefGoogle Scholar
4Bazley, N. W.. Lower bounds for eigenvalues. J. Math. Mech. 10 (1961), 289308.Google Scholar
5Bazley, N. W. and Fox, D. W.. Lower bounds to eigenvalues using operator decompositions of the form B*B. Arch. Rational Mech. Anal. 10(1962), 352360.CrossRefGoogle Scholar
6Bazley, N. W. and Fox, D. W.. Improvement of bounds to eigenvalues of operators of the form T*T. J. Nat. Bur. Standards, Sect. B 68 (1964), 173183.CrossRefGoogle Scholar
7Bazley, N. W., Fox, D. W. and Stadter, J. T.. Upper and lower bounds for the frequencies of rectangular free plates. Z. Angew. Math. Phys. 18 (1967), 445460.CrossRefGoogle Scholar
8Beattie, C. A.. Some convergence results for intermediate problems that displace essential spectra. Applied Physics Laboratory Report No. 65 (Laurel: Johns Hopkins University, 1982).Google Scholar
9Beattie, C. A. and Greenlee, W. M.. Convergence theorems for intermediate problems. Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), 107122.CrossRefGoogle Scholar
10Beattie, C. A. and Greenlee, W. M.. Corrigendum: Convergence theorems for intermediate problems Proc. Roy. Soc. Edinburgh Sect. A 104 (1986); 349350.CrossRefGoogle Scholar
11Brown, R. D.. Convergence of approximation methods for eigenvalues of completely continuous quadratic forms. Rocky Mountain J. Math. 10 (1980), 199215.CrossRefGoogle Scholar
12Brown, R. D.. Variational approximation methods for eigenvalues. Convergence theorems, Computational Mathematics 543–558 (Warsaw: Banach Center Publications 13, 1983).Google Scholar
13Fox, D. W.. Lower bounds for eigenvalues with displacement of essential spectra. SIAM J. Math. Anal. 3 (1972), 617624.CrossRefGoogle Scholar
14Fox, D. W. and Sigillito, V. G.. Lower and upper bounds to energies of radial lithium. Chem. Phys. Lett. 13 (1972), 8587.CrossRefGoogle Scholar
15Fox, D. W. and Sigillito, V. G.. Bounds for energies of radial lithium. Z. Angrew. Math. Phys. 23 (1972), 392411.CrossRefGoogle Scholar
16Greenlee, W. M.. A convergent variational method of eigenvalue approximation. Arch. Rational Mech. Anal. 81 (1983), 279287.CrossRefGoogle Scholar
17Kato, T.. Perturbation Theory for Linear Operators, 2nd Ed. (Berlin: Springer, 1976).Google Scholar
18Linden, H., Uber stabile Eigenwerte und die Konvergenz des Weinstein-Aronszajn-Bazley-Fox-Verfahrens bei nicht notwendig rein discretem Spectrum. Computing (Arch. Electron. Rechnen) 9 (1972), 233244.Google Scholar
19Poznyak, L. T.. Estimation of the rate of convergence of a variant of the method of intermediate problems. Zh. Vyfhisl. Mat. i. Mat. Fiz. 8 (1968), 11171126; U.S.S.R. Computat. Math, and Math. Phys. 8 (1968), 246-260.Google Scholar
20Poznyak, L. T.. The Convergence of the Bazley-Fox process and the evaluation of this convergence. Zh. Vychisl. Mat. i. Mat. Fiz. 9 (1968), 860872; U.S.S.R. Comput. Math, and Math. Phys. 9 (1969), 167-184.Google Scholar
21Poznyak, L. T.. The rate of convergence of the Bazley-Fox method of intermediate problems in the generalized eigenvalue problem of the form Au = ACu. Zh. Vylhisl. Mat. i. Mat. Fiz. 10 (1970), 326339; U.S.S.R. Comput. Math, and Math. Phys. 10 (1970), 56-74.Google Scholar
22Simon, B.. Lower semicontinuity of positive quadratic forms. Proc. Roy. Soc. Edinburgh Sect. A 79 (1977), 267273.Google Scholar
23Simon, B.. A canonical decomposition for quadratic forms with applications to monotone convergence theorems. J. Funct. Anal. 28 (1978), 377385.CrossRefGoogle Scholar
24Weidmann, J.. Monotone continuity of the spectral resolution and the eigenvalues. Proc. Roy. Soc. Edinburgh Sect. A 85 (1980), 131136.CrossRefGoogle Scholar
25Weinberger, H. F.. Variational Methods for Eigenvalue Problems (Philadelphia: SIAM, 1974).CrossRefGoogle Scholar
26Weinstein, A. and Stenger, W.. Methods of Intermediate Problems for Eigenvalues. Theory and Ramifications (New York: Academic Press, 1972).Google Scholar