Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-17T00:20:19.396Z Has data issue: false hasContentIssue false

22.—Analytic, Generalized, Hyperanalytic Function Theory and an Application to Elasticity*

Published online by Cambridge University Press:  14 February 2012

Robert P. Gilbert
Affiliation:
University of Delaware, and Freie Universität, Berlin
Wolfgang L. Wendland
Affiliation:
Technische Hochschule, Darmstadt.

Synopsis

Though it is still an open problem for which class of first-order elliptic systems Carleman's theorem holds, this is proven here for a certain class of systems (with analytic coefficients) for which Douglis introduced the hypercomplex algebra and hyperanalytic functions. The proof is based on a representation formula generalising Vekua's approach with Volterra integral equations in C2 to more than two unknowns. The representation formula is of its own interest because it provides the generation of complete families of solutions. The equations of plane inhomogeneous elasticity problems lead to a system of the desired class.

Type
Research Article
Copyright
Copyright © Royal Society of Edinburgh 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Agmon, S., Douglis, A. and Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II. Comm. Pure Appl. Math., 17, 3592, 1964.CrossRefGoogle Scholar
2Bojarskii, B. V., Theory of generalized analytic vectors. Ann. Polon. Math., 17, 281320, 1966.Google Scholar
3Bochner, S. and Martin, W. T., Several Complex Variables. Princeton: Univ. Press, 1948.Google Scholar
4Douglis, A., A function theoretic approach to elliptic systems of equations in two variables. Comm. Pure Appl. Math., 6, 259289, 1953.CrossRefGoogle Scholar
5Douglis, A., On uniqueness in Cauchy problems for elliptic systems of equations. Comm. Pure Appl. Math., 13, 593607, 1960.CrossRefGoogle Scholar
6Garabedian, R., Analyticity and reflection for plane elliptic systems. Comm. Pure Appl. Math., 14, 315322, 1961.CrossRefGoogle Scholar
7Gilbert, R. P., Function Theoretic Methods inPartial Differential Equations. New York: Academic, 1969.Google Scholar
8Gilbert, R. P., Constructive Methods for Elliptic Partial Differential Equations. Heidelberg: Springer, 1974.CrossRefGoogle Scholar
9Gilbert, R. and Hile, G., Generalized hyperanalytic function theory. Trans. Amer. Math Soc. and Bull. Amer. Math Soc. To appear.Google Scholar
10Habetha, K., Über linear elliptische Differentialgleichungssysteme mit analytischen Koeffizienten. Ber. Gesellsch. Math. Datenverarbeit. Bonn, 77, 6589, 1973.Google Scholar
11Habetha, K., On Zeros of Elliptic Linear Systems in the Plane. London: Pitman, 1975.Google Scholar
12Hörmander, L., Linear Partial Differential Operators. Berlin: Springer,1969.CrossRefGoogle Scholar
13Hopf, E., Über den funktionalen, insbesondere den analytischen Charakter der Lösungen elliptischer DifFerentialgleichungen zweiter Ordnung. Math. Z., 34, 194233, 1931.CrossRefGoogle Scholar
14John, F., Plane Waves and Spherical Means applied to Partial Differential Equations. New York: Interscience, 1955.Google Scholar
15Kühn, E., Über die Funktionentheorie und das Ähnlichkeitsprinzip einer Klasse elliptischer Differentialgleichungssysteme in der Ebene. Dissertation, Dortmund Univ., 1974.Google Scholar
16Morrey, C. B. Jr., and Nirenberg, L., On the analyticity of the solutions of linear elliptic systems of partial differential equations. Comm. Pure Appl. Math., 10, 270290, 1957.CrossRefGoogle Scholar
17Pascali, D., Vecteurs Analytiques Généralisés. Rev. Roumaine Math. Pures Appl,10, 779808, 1965.Google Scholar
18Vekua, I. N., New Methods for Solving Elliptic Equations. New York: Wiley, 1967.Google Scholar
19Vekua, I. N., Generalized Analytic Functions. London: Pergamon, 1962.Google Scholar
20Weck, N., Auβenraumaufgaben in der Theorie stationarer Schwingungen inhomogener elastischer Korper. Math. Z., 111, 387398, 1969.CrossRefGoogle Scholar