Skip to main content Accessibility help
×
Home

FROBENIUS SPLITTING OF EQUIVARIANT CLOSURES OF REGULAR CONJUGACY CLASSES

  • JESPER FUNCH THOMSEN (a1)

Abstract

Let $G$ denote a connected semisimple and simply connected algebraic group over an algebraically closed field $k$ of positive characteristic and let $g$ denote a regular element of $G$. Let $X$ denote any equivariant embedding of $G$. We prove that the closure of the conjugacy class of $g$ within $X$ is normal and Cohen–Macaulay. Moreover, when $X$ is smooth we prove that this closure is a local complete intersection. As a consequence, the closure of the unipotent variety within $X$ shares the same geometric properties.

Copyright

Keywords

FROBENIUS SPLITTING OF EQUIVARIANT CLOSURES OF REGULAR CONJUGACY CLASSES

  • JESPER FUNCH THOMSEN (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed