Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T01:03:41.492Z Has data issue: false hasContentIssue false

Roadmap to Consider Physiological and Psychological Aspects of User-product Interactions in Virtual Product Engineering

Published online by Cambridge University Press:  26 July 2019

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To successfully facilitate user-centred design, a multitude of different aspects has to be considered, from purely physiological to psychological-emotional factors. The overall aim is to increase the customer satisfaction by enhancing the fit between products and their users in the respective context of use. Further virtualisation of user-centred design processes holds the potential to convey the concepts of frontloading and predictive engineering from classical product engineering. Our vision is to facilitate a comprehensive consideration of user-product interactions in virtual product engineering operationalised by the mission to develop methods and tools to assess and design user-product interactions according to physiological and psychological aspects. A variety of work has already been done to model musculoskeletal user groups, to configure, predict, simulate and optimise physical user-product interactions, to integrate such models into CAD or to map individual subjective values to product design. Nevertheless, there are still research areas to be addressed to enable a comprehensive implementation of the mentioned approach. These are discussed in the present contribution.

Type
Article
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NCCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Copyright
© The Author(s) 2019

References

Ackermann, M. and van den Bogert, A.J. (2010), “Optimality principles for model-based prediction of human gait”, Journal of biomechanics, Vol. 43 No. 6, pp. 10551060.Google Scholar
Akao, Y. 1990), Quality function deployment: Integrating customer requirements into product design, Productivity Press, Cambridge, Mass.Google Scholar
Ansorge, U. and Leder, H. (2017), Wahrnehmung und Aufmerksamkeit, Springer, Wiesbaden.Google Scholar
Bichler, R.J. (2015), Biomechanik und Fahrzeugentwicklung: Erstellung und Anwendung eines Modells zur virtuellen Beurteilung des Ein- und Ausstiegs, Zugl.: München, Techn. Univ., Diss., 2015, Reihe Sportwissenschaften, Vol. 16, 1. Aufl., Sierke, Göttingen.Google Scholar
Bubb, H. (2015), Automobilergonomie, ATZ / MTZ-Fachbuch, Springer Vieweg, Wiesbaden.Google Scholar
Damsgaard, M., Rasmussen, J., Christensen, S.T., Surma, E. and Zee, M.d. (2006), “Analysis of musculoskeletal systems in the AnyBody Modeling System”, Simulation Modelling Practice and Theory, Vol. 14 No. 8, pp. 11001111.Google Scholar
Enders, A. (2013), Informationsintegration bei der Produktbeurteilung: Eine empirische Studie unter besonderer Berücksichtigung der Produktvertrautheit und des Produktinvolvements, Springer, Heidelberg.Google Scholar
Farahani, S.D., Andersen, M.S., de Zee, M. and Rasmussen, J. (2016), “Optimization-based dynamic prediction of kinematic and kinetic patterns for a human vertical jump from a squatting position”, Multibody System Dynamics, Vol. 36 No. 1, pp. 3765.Google Scholar
Fenko, A., Schifferstein, H.N.J. and Hekkert, P. (2010), “Shifts in sensory dominance between various stages of user-product interactions”, Applied Ergonomics, Vol. 41 No. 1, pp. 3440.Google Scholar
Fluit, R., Andersen, M.S., Kolk, S., Verdonschot, N. and Koopman, H.F.J.M. (2014), “Prediction of ground reaction forces and moments during various activities of daily living”, Journal of biomechanics, Vol. 47 No. 10, pp. 23212329.Google Scholar
Freudenthal, A. (1999), The design of home appliances for young and old consumers, Series ageing and ergonomics, Vol. 2, Delft University of Technology, Delft.Google Scholar
Gibson, J.J. (1979), The Ecological Approach to Visual Perception: Classic Edition, Psychology Press & Routledge Classic Editions, Taylor and Francis, Hoboken.Google Scholar
Glende, S. (2010), Entwicklung eines Konzepts zur nutzergerechten Produktentwicklung mit Fokus auf die “Generation Plus”, Dissertation, Fakultät für Verkehrs- und Maschinenwesen, Technische Universität Berlin, Berlin.Google Scholar
Gößling, R., Eicker, H., Bartz, M. and Bender, B. (2014), “Biomechanische Betrachtungen der Berechnung von Kräften mit Menschmodellen”, Beiträge zum 25. Symposium Design for X, TuTech, Hamburg, pp. 110120.Google Scholar
Gould, J.D. and Lewis, C. (1985), “Designing for usability. Key principles and what designers think”, Communications of the ACM, Vol. 28 No. 3, pp. 300311.Google Scholar
Hammer, N. (1992), Möglichkeiten und Grenzen der Überprüfung von Designprodukten durch Okulometrie, Die Blaue Eule, Essen.Google Scholar
Hassenzahl, M., Burmester, M. and Koller, F. (2003), “AttrakDiff. Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität”, In: Szwillus, G. and Ziegler, J., 57, Mensch & Computer 2003: Interaktion in Bewegung, Teubner, Stuttgart, pp. 187196.Google Scholar
Holden, D., Saito, J. and Komura, T. (2016), “A deep learning framework for character motion synthesis and editing”, ACM Transactions on Graphics, Vol. 35 No. 4, pp. 111.Google Scholar
Iwamoto, M., Kisanuki, Y., Watanabe, I., Furusu, K. and Miki, K. (2002), “Development of a finite element model of the total human model for safety (THUMS) and application to injury reconstruction”, International Research Council on Biomechanics of Injury.Google Scholar
Kano, N. (1984), “Attractive Quality and Must-Be Quality”, J. Jpn. Soc. Quality Control, Vol. 14, pp. 3948.Google Scholar
Kapandji, A.I. and Koebke, J. (2009), Funktionelle Anatomie der Gelenke: Schematisierte und kommentierte Zeichnungen zur menschlichen Biomechanik ; [einbändige Ausgabe: obere Extremität, untere Extremität, Rumpf und Wirbelsäule], 5., [unveränd.] Aufl., Thieme, Stuttgart.Google Scholar
Kroeber-Riel, W., Weinberg, P. and Gröppel-Klein, A. (2009), Konsumentenverhalten, 9th ed., Vahlen, München.Google Scholar
Krüger, D. and Wartzack, S. (2014), “Towards CAD integrated Simulation of Use under Ergonomic Aspects”, Proceedings of the International Design Conference - DESIGN 2014, pp. 20952104.Google Scholar
Krüger, D. and Wartzack, S. (2017), “A contact model to simulate human-artifact interaction based on force optimization. Implementation and application to the analysis of a training machine”, Computer methods in biomechanics and biomedical engineering, Vol. 20 No. 15, pp. 110.Google Scholar
Kukkonen, S. (2005), Exploring Eye-Tracking in Design Evaluation, 25.-28.11.2005.Google Scholar
McCrae, R.R. and Costa, P.T.J. (1996), “Toward a new generation of personality theories: Theoretical contexts for the five-factor model”, In: Wiggins, J.S. (Ed.), The five-factor model of personality: Theoretical perspectives, Guilford Press, New York, pp. 5187.Google Scholar
Miehling, J. (2018), Berücksichtigung biomechanischer Zusammenhänge in der nutzergruppenspezifischen virtuellen Produktentwicklung, Fortschritt-Berichte VDI. Reihe 1, Konstruktionstechnik/ Maschinenelemente, Nr. 445, VDI Verlag, Düsseldorf.Google Scholar
Miehling, J., Geißler, B. and Wartzack, S. (2013), “Towards Biomechanical Digital Human Modeling of Elderly People for Simulations in Virtual Product Development”, Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 57 No. 1, pp. 813817.Google Scholar
Miehling, J., Schuhhardt, J., Paulus-Rohmer, F. and Wartzack, S. (2015), “Computer Aided Ergonomics Through Parametric Biomechanical Simulation”, Volume 1B: 35th Computers and Information in Engineering Conference, Boston, Massachusetts, USA, Sunday 2 August 2015, ASME. V01BT02A016.Google Scholar
Miehling, J. and Wartzack, S., “Strength Mapping Algorithm (SMA) for Biomechanical Human Modelling using Empirical Population Data”, Proceedings of the 20th International Conference on Engineering Design (ICED15), Vol. 10: Design Information and Knowledge Management, pp. 115124.Google Scholar
Miehling, J., Wolf, A. and Wartzack, S. (2018), “Musculoskeletal Simulation and Evaluation of Support System Designs”, In: Karafillidis, A. and Weidner, R. (Ed.), Developing Support Technologies: Integrating Multiple Perspectives to Create Assistance that People Really Want, Biosystems & Biorobotics, Springer International Publishing, Cham, pp. 219227.Google Scholar
Nagamachi, M. and Lokman, A.M. (2011), Innovations of Kansei engineering, CRC Taylor & Francis, Boca Raton.Google Scholar
Norman, D.A. (2013), The design of everyday things, Revised and expanded edition, Basic Books, New York, NY.Google Scholar
Pankoke, S. and Siefert, A. (2007), “Virtual Simulation of Static and Dynamic Seating Comfort in the Development Process of Automobiles and Automotive Seats. Application of Finite-Element-Occupant-Model CASIMIR”, JUN. 12, 2007, SAE International400 Commonwealth Drive, Warrendale, PA, United States.Google Scholar
Peng, X.B., Abbeel, P., Levine, S. and van de Panne, M. (2018), “DeepMimic. Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills”, ACM Transactions on Graphics, Vol. 37 No. 4, pp. 114.Google Scholar
Rasmussen, J. (2005), “Musculoskeletal Simulation – (Dis)comfort Evaluation”, S&V OBSERVER, pp. 89.Google Scholar
Schröppel, T., Miehling, J. and Wartzack, S. (2019a), Roadmap für die Entwicklung einer Methodik zur dualen Nutzerintegration, Stuttgarter Symposium für Produktentwicklung, 16.05.2019, Stuttgart. accepted Paper.Google Scholar
Schröppel, T., Miehling, J. and Wartzack, S. (2019b), Konzept zur Identifikation relevanter Produkteigenschaften zur Unterstützung einer positiven User Experience, Entwerfen Entwickeln Erleben, 27.-28.06.2019, Dresden. accepted Paper.Google Scholar
Schröppel, T. and Wartzack, S. (2018), “Making a difference: Integrating physiological and psychological needs in user description”, In: Ekströmer, P., Schütte, Simon and Ölvander, Johan (Ed.), Proceedings of NordDesign 2018, Linköping, Sweden, 14th - 17th August 2018, LiU Tryck, Linköping, pp. 110.Google Scholar
Seeger, H. (2005), Design technischer Produkte, Produktprogramme und -systeme, Springer, Berlin.Google Scholar
Seth, A., Hicks, J.L., Uchida, T.K., Habib, A., Dembia, C.L., Dunne, J.J., Ong, C.F., DeMers, M.S., Rajagopal, A., Millard, M., Hamner, S.R., Arnold, E.M., Yong, J.R., Lakshmikanth, S.K., Sherman, M.A., Ku, J.P. and Delp, S.L. (2018), “OpenSim. Simulating musculoskeletal dynamics and neuromuscular control to study human and animal movement”, PLoS computational biology, Vol. 14 No. 7, pp. e1006223.Google Scholar
Thomke, S. (2000), “The effect of “front-loading” problem-solving on product development performance”, Journal of Product Innovation Management, Vol. 17 No. 2, pp. 128142.Google Scholar
Vajna, S. (2014), Integrated Design Engineering: Ein interdisziplinäres Modell für die ganzheitliche Produktentwicklung, Springer, Berlin Heidelberg.Google Scholar
Wartzack, S. (2001), Predictive Engineering - Assistenzsystem zur multikriteriellen Analyse alternativer Produktkonzepte, Zugl.: Erlangen-Nürnberg, Univ., Diss., 2000, Dissertation. Fortschritt-Berichte VDI Reihe 1 Nr. 336, VDI-Verlag, Düsseldorf.Google Scholar
Wolf, A., Binder, N., Miehling, J. and Wartzack, S. (2019a), “Towards virtual assessment of human factors: A concept for data driven prediction and analysis of physical user-product interactions”, 22nd International Conference on Engineering Design, Delft, 05.-08.08.2019, accepted Paper.Google Scholar
Wolf, A., Krüger, D., Miehling, J. and Wartzack, S. (2019b), “Approaching an ergonomic future: An affordance-based interaction concept for digital human models”, 29th CIRP Design Conference, Póvoa de Varzim, 08.-10.05.2019, accepted Paper.Google Scholar
Wolf, A. and Wartzack, S. (2018), “Parametric movement synthesis. Towards virtual design optimistaion of man-machine interaction in engineering design”, In: Marjanović, D., Štorga, M., Škec, S., Bojčetić, N. and Pavković, N. (Ed.), Design 2018: Proceedings of the 15th International Design Conference, May 2018, Dubrovnik, Croatia, May, 21-24, 2018, Fac. of Mechanical Engineering and Naval Architecture Univ, Zagreb, pp. 941952.Google Scholar
Zöller, S.G. and Wartzack, S. (2017), “Considering Users’ Emotions in Product Development Processes and the Need to Design for Attitudes”, in Fukuda, S. (Ed.), Emotional Engineering, 5th ed., Springer International Publishing, Cham, pp. 6997.Google Scholar