Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T08:07:08.307Z Has data issue: false hasContentIssue false

What can pre-solar grains tell us about the solar nebula?

Published online by Cambridge University Press:  01 August 2006

Gary R. Huss
Affiliation:
Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, 1680 East-West Road, Honolulu, HI 96822, USA email: ghuss@higp.hawaii.edu
Bruce T. Draine
Affiliation:
Department of Astrophysical Sciences, Princeton University, 108 Peyton Hall, Princeton, NJ 08544-1001, USA email: draine@astro.princeton.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several types of pre-solar grains, grains that existed prior to solar system formation, have been found in the fine-grained components of primitive meteorites, interplanetary dust particles (IDPs), and comet samples. Known pre-solar components have isotopic compositions that reflect formation from the ejecta of evolved stars. Other pre-solar materials may have isotopic compositions very similar to solar system materials, making their identification as pre-solar grains problematic. Pre-solar materials exhibit a range of chemical and thermal resistance, so their relative abundances can be used to probe the conditions in the solar nebula. Detailed information on the relative abundances of pre-solar and solar-system materials can provide information on the temperatures, radiation environment, and degree of radial mixing in the early solar system.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Allamandola, L. J., Sandford, S. A., & Valero, G. 1988, Icarus, 76, 225Google Scholar
Amari, S., Anders, E., Virag, A., & Zinner, E. 1990, Nature, 345, 238Google Scholar
Bernstein, M. P., Dworkin, J. P., Sandford, S. A., & Allamandola, L. J. 2001, Meteorit. Planet. Sci., 36, 351CrossRefGoogle Scholar
Black, D. C., & Pepin, R. O. 1969, Earth Planet. Sci. Lett., 6, 395Google Scholar
Brearley, A. J. 1993, Geochim. Cosmochim. Acta, 57, 1521CrossRefGoogle Scholar
Clayton, R. N., Grossman, L., & Mayeda, T. K. 1973, Science, 182, 485Google Scholar
Clayton, R. N., Onuma, N., Grossman, L., & Mayeda, T. K. 1977, Earth Planet. Sci. Lett., 34, 209CrossRefGoogle Scholar
Cuzzi, J. N., Davis, S. S., & Dobrovolskis, A. R. 2003, Icarus, 166, 385CrossRefGoogle Scholar
Draine, B. T. 2003, ARAA, 41, 241CrossRefGoogle Scholar
Draine, B. T. 2006, in: Sonneborn, G., Moos, H. W., & Andersson, B.G. (eds.), Astrophysics in the Far Ultraviolet, ASP-CS 348, 58Google Scholar
Grossman, L. 1972, Geochim. Cosmochim. Acta, 36, 597Google Scholar
Huss, G. R., & Lewis, R. S. 1995, Geochim. Cosmochim. Acta, 59, 115CrossRefGoogle Scholar
Huss, G. R., Lewis, R. S., & Hemkin, S. 1996, Geochim. Cosmochim. Acta, 60, 3311Google Scholar
Huss, G. R., Meshik, A. P., Smith, J. B., & Hohenberg, C. M. 2003, Geochim. Cosmochim. Acta, 67, 4823Google Scholar
Keller, L. P., & Messenger, S. 2005, in: Krot, A. N., Scott, E. R. D. & Reipurth, B. (eds.), Chondrites and the Protoplanetary Disk, ASP-CS 341, 657Google Scholar
Kemper, F., Spaans, M., Jansen, D. J., Hogerheijde, M. R., van Dishoeck, E. F., & Tielens, A. G. G. M. 1999, ApJ, 515, 649Google Scholar
Kemper, F., Vriend, W. J., & Tielens, A. G. G. M. 2005, ApJ, 633, 534Google Scholar
Lattimer, J. M., Schramm, D. N., & Grossman, L. 1978, ApJ, 219, 230Google Scholar
Lewis, R. S., Tang, M., Wacker, J. F., Anders, E., & Steele, E. 1987, Nature, 326, 160CrossRefGoogle Scholar
Linsky, J. L., Draine, B. T., Moos, H. W., et al. 2006, ApJ, 647, 1106CrossRefGoogle Scholar
Messenger, S., Sandford, S., & Brownlee, D. 2006, in: Lauretta, D. S. & McSween, H. Y. (eds.), Meteorites and the Early Solar System II (Univ. of Arizona), p. 187CrossRefGoogle Scholar
Molster, F. J., Waters, L. B. F. M., Tielens, A. G. G. M., et al. 2002, A&A, 382, 241Google Scholar
Niederer, F. R., Papanastassiou, D. A., & Wasserburg, G. J. 1980, ApJ (Letters), 240, L73Google Scholar
Pendleton, Y. J., Tielens, A. G. G. M., Tokunaga, A. T., & Bernstein, M. P. 1999, ApJ, 513, 294CrossRefGoogle Scholar
Reynolds, J. H., & Turner, G. 1964, J. Geophys. Res. 69, 3263Google Scholar
Sanford, S. A., Bernstein, M. P., & Dworkin, J. P. 2001, Meteorit. Planet. Sci. 36, 1117Google Scholar
Shu, F. H., Shang, H., & Lee, T. 1996, Science, 271, 1545Google Scholar
Speck, A. K., Barlow, M. J., & Skinner, C. J. 1997, MNRAS, 288, 431Google Scholar
Swart, P. K., Grady, M. M., Pillinger, C. T., Lewis, R. S., & Anders, E. 1983, Science, 220, 406Google Scholar
Tang, M., & Anders, E. 1988, Geochim. Cosmochim. Acta, 52, 1235Google Scholar
Tielens, A. G. G. M., Waters, L. B. F. M., & Bernatowicz, T. J. 2005, in: Krot, A. N., Scott, E. R. D., & Reipurth, B. (eds.), Chondrites and the Protoplanetary Disk, ASP-CS, 341, 605Google Scholar
Wooden, D. H., Woodward, C. E., & Harker, D. E. 2004, ApJ (Letters), 612, L77CrossRefGoogle Scholar
Yang, J., & Epstein, S. 1984, Nature, 311, 544Google Scholar