Skip to main content Accessibility help
×
Home

Warm gas accretion onto the Galaxy

  • J. Bland-Hawthorn (a1)

Abstract

We present evidence that the accretion of warm gas onto the Galaxy today is at least as important as cold gas accretion. For more than a decade, the source of the bright Hα emission (up to 750 mR†) along the Magellanic Stream has remained a mystery. We present a hydrodynamical model that explains the known properties of the Hα emission and provides new insights on the lifetime of the Stream clouds. The upstream clouds are gradually disrupted due to their interaction with the hot halo gas. The clouds that follow plough into gas ablated from the upstream clouds, leading to shock ionisation at the leading edges of the downstream clouds. Since the following clouds also experience ablation, and weaker Hα (100–200 mR) is quite extensive, a disruptive cascade must be operating along much of the Stream. In order to light up much of the Stream as observed, it must have a small angle of attack (≈ 20°) to the halo, and this may already find support in new Hi observations. Another prediction is that the Balmer ratio (Hα/Hβ) will be substantially enhanced due to the slow shock; this will soon be tested by upcoming WHAM observations in Chile. We find that the clouds are evolving on timescales of 100–200 Myr, such that the Stream must be replenished by the Magellanic Clouds at a fairly constant rate (≳ 0.1 M yr−1). The ablated material falls onto the Galaxy as a warm drizzle; diffuse ionized gas at 104 K is an important constituent of galactic accretion. The observed Hα emission provides a new constraint on the rate of disruption of the Stream and, consequently, the infall rate of metal-poor gas onto the Galaxy. We consider the stability of Hi clouds falling towards the Galactic disk and show that most of these must break down into smaller fragments that become partially ionized. The Galactic halo is expected to have huge numbers of smaller neutral and ionized fragments. When the ionized component of the infalling gas is accounted for, the rate of gas accretion is ~0.4 M yr−1, roughly twice the rate deduced from Hi observations alone.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Warm gas accretion onto the Galaxy
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Warm gas accretion onto the Galaxy
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Warm gas accretion onto the Galaxy
      Available formats
      ×

Copyright

References

Hide All
Agertz, O., et al. 2007, MNRAS, 380, 963
Bekki, K. & Freeman, K. C. 2003, MNRAS, 346, L11
Benjamin, R. & Danly, L. 1997, ApJ, 481, 764
Besla, G. et al. 2007, ApJ, 668, 949
Binney, J. & Dehnen, W. 1997, MNRAS
Binney, J., Dehnen, W., & Bertelli, G. 2000, MNRAS, 318, 658
Bland-Hawthorn, et al. 1998, MNRAS, 299, 611
Bland-Hawthorn, J., & Maloney, P. R. 1999, ApJL, 510, L33
Bland-Hawthorn, J., & Maloney, P. R. 2002, Extragalactic Gas at Low Redshift, 254, 267
Bland-Hawthorn, J., Sutherland, R., Agertz, O., & Moore, B. 2007, ApJ, 670, L109
Bregman, J. N. 2007, ARA&A, 45, 221
Brüns, C., et al. 2005, AAp, 432, 45
Canto, J. & Raga, A. C. 1991, ApJ, 372, 646
Chandrasekhar, S. 1961, Hydrodynamic and Hydromagnetic Stability, Clarendon, Oxford
Chevalier, R. A. & Raymond, J. C. 1978, ApJL, 225, L27
Connors, T. W., Kawata, D., & Gibson, B. K. 2006, MNRAS, 371, 108
De Young, D. S. 2003, MNRAS, 343, 719
Ferrara, A. & Field, G. B. 1994, ApJ, 423, 665
Flynn, C. et al. 2006, MNRAS, 372, 1149
Gaensler, B. et al. 2008, PASA, submitted
Gibson, B. K. et al. 2000, AJ, 120, 1830
Gregori, G. et al. 1999, ApJ, 527, L113
Heng, K. & McCray, R. 2007, ApJ, 654, 923
Hibbard, J. E. & van Gorkom, J. H. 1996, AJ, 111, 655
Hill, A. et al. 2008, ApJ, 686, 363
Jones, T. W. & De Young, D. 2005, ApJ, 624, 586
Kahn, F. D. 1980, AAp, 83, 303
Kaiser, C. R., Pavlovski, G., Pope, E. D. C., & Fangohr, H. 2005, MNRAS, 359, 493
Kalberla, P. & Dedes, L. 2008, A& A, in press (0804.4831)
Kallivayalil, N., van der Marel, R. P. & Alcock, C., 2006, ApJ, 652, 1213
Keres, D., Katz, N., Weinberg, D. H. & Dave, R. 2005, MNRAS, 363, 2
Klein, R. I., McKee, C. F., & Colella, P. 1994, ApJ, 420, 213
Konz, C., Brüns, C., & Birk, G. T. 2002, A&A, 391, 713
Larson, R. B. 1969, MNRAS, 145, 405
Lehner, N. & Howk, C. 2007, MNRAS, 377, 687
Liska, R. & Wendroff, B. 1999, International Journal for Numerical Methods in Fluids, 30, 461
Lockman, F. J., Benjamin, R. A., Heroux, A. J., & Langston, G. I. 2008, ApJ, 679, L21
Madsen, G. J., Haffner, L. M., & Reynolds, R. J. 2002, ASPC, 276, 96
Maloney, P. R. & Bland-Hawthorn, J. 1999, ApJL, 522, L81
Maloney, P. 1993, ApJ, 414, 41
Mastropietro, C., Moore, B., Mayer, L., Wadsley, J., & Stadel, J. 2005, MNRAS, 363, 509
McKee, C. F. & Cowie, L. L. 1977, ApJ, 215, 213
Miyamoto, M. & Nagai, R. 1975, PASJ, 27, 533
Moore, B. & Davis, M. 1994, ApJ, 270, 209
Murray, S. D., White, S. D. M., Blondin, J. M., & Lin, D. N. C. 1993, ApJ, 407, 588
Murray, S. D. & Lin, D. C. 2004, ApJ, 615, 586
Nicastro, F., Mathur, S., & Elvis, M. 2008, Science, 319, 55
Oort, J. 1966, Bull. Astron. Inst. Neth., 18, 421
Pavlovski, G., Kaiser, C., Pope, E. C. D., & Fangohr, H. 2008, MNRAS, 384, 1377
Peek, J. E. G., Putman, M. E., & Sommer-Larsen, J. 2008, ApJ, 674, 227
Piatek, S., Pryor, C., & Olszewski, E. W. 2008, AJ, 135, 1024
Putman, M. E. et al. 2003, ApJ, 597, 948
Quilis, V. & Moore, B. 2001, ApJ, 555, L95
Rasmussen, A., Kahn, S., & Paerels, F. 2003, ASSL, 281, 109
Rosen, A. & Smith, M. D. 2004, MNRAS, 347, 1097
Ruszkowski, M., Enslin, T. A., Bruggen, M., Heinz, S., & Pfrommer, C. 2007, MNRAS, 378, 662
Savage, B. D. et al. 2003, ApJS, 146, 125
Sembach, K. R., Howk, J. C., Savage, B. D., Shull, J. M., & Oegerle, W. R. 2001, ApJ, 561, 573
Sembach, K. R., et al. 2003, ApJS, 146, 165
Sembach, K. R. et al. 2004, ApJS, 150, 387
Slavin, J. D., Shull, J. M., & Begelman, M. C. 1993, ApJ, 407, 83
Smith, M. et al. 2007, MNRAS, 379, 755
Sternberg, A., McKee, C. F., & Wolfire, M. 2002, ApJS, 143, 419
Sternberg, A. & Soker, N., 2008, MNRAS, 389, L13
Sun, X. H., Reich, W., Waelkens, A., & Enslin, T. A. 2008, A&A, 477, 573
Sutherland, R. S., 2008, ApJ, in preparation
Tamm, A., Tempel, E., & Tenjes, P. 2007, astro-ph/0707.4375
Teyssier, R. 2002, AAp, 385, 337
Thom, C., et al. , 2008, astro-ph
Tisserand, P. et al. 2007, A&A, 469, 387
Tripp, T. M., et al. 2003, AJ, 125, 3122
Wakker, B. P. 2001, ApJS, 136, 463
Wakker, B. P et al. 2007, ApJ, 207, 670, L113
Weiner, B.J. & Williams, T. B. 1996, AJ, 111, 1156
Weiner, B. J., Vogel, S. N., & Williams, T. B. 2002, Extragalactic Gas at Low Redshift, 254, 256
Westmeier, T. & Koribalski, B. S. 2008, MNRAS, 388, L29
Wilkinson, M. I. & Evans, N. W. 1999, MNRAS, 310, 645
Williams, J. P. & McKee, C. F. 1997, ApJ, 476, 166
Wolfire, M. et al. 1995, ApJ, 453, 673
Wolfire, M. et al. 2003, ApJ, 587, 278
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Related content

Powered by UNSILO

Warm gas accretion onto the Galaxy

  • J. Bland-Hawthorn (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.