Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-11T23:45:03.389Z Has data issue: false hasContentIssue false

Variation of the molecular cloud lifecycle across the nearby galaxy population

Published online by Cambridge University Press:  09 June 2023

Jaeyeon Kim
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg
Mélanie Chevance
Affiliation:
Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg Cosmic Origins Of Life (COOL) Research DAO, coolresearch.io
J. M. Diederik Kruijssen
Affiliation:
Cosmic Origins Of Life (COOL) Research DAO, coolresearch.io
Adam K. Leroy
Affiliation:
Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA Center for Cosmology and Astroparticle Physics, 191 West Woodruff Avenue, Columbus, OH 43210, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The processes of star formation and feedback take place on the scales of giant molecular clouds (GMCs; ~ 100 pc) within galaxies and play a major role in governing galaxy evolution. By applying a robust statistical method to PHANGS observations, we systematically measure the evolutionary timeline from molecular clouds to exposed young stellar regions, across an unprecedented sample of 54 galaxies. These timescales depend on galaxy environment, revealing the role of galactic-scale dynamical processes in the small-scale GMC evolution. Furthermore, in the 5 nearest galaxies of our sample, we have refined the GMC timeline further and established the duration of the heavily obscured phase, using 24 μm emission. These results represent a major first step towards a comprehensive picture of cloud assembly and feedback, which will be extended to 19 more galaxies with our ongoing JWST Large Program.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Chevance, M., Kruijssen, J. M. D., Hygate, A. P. S., et al., 2020, MNRAS, 493, 2872 CrossRefGoogle Scholar
Chevance, M., Krumholz, Mark R. and McLeod, Anna F., et al., 2022, arXiv:2203.09570Google Scholar
Dumas, G., Schinnerer, E., Tabatabaei, F. S., et al., 2011, AJ, 141, 41 CrossRefGoogle Scholar
Engargiola, G., Plambeck, R. L., Rosolowsky, E., Blitz, L., 2003, ApJS, 49, 343 CrossRefGoogle Scholar
Heyer, M., Dame, T. M., 2015, ARAA, 53, 583 CrossRefGoogle Scholar
Kawamura, A., Mizunol, Y., Minamidani, T., et al., 2009, ApJS, 184, 1CrossRefGoogle Scholar
Kennicutt, R. C., & Evans, N. J. 2012, ARAA, 50, 531 CrossRefGoogle Scholar
Kim, J., Chevance, M., Kruijssen, J. M. D., et al., 2021, MNRAS, 504, 487 CrossRefGoogle Scholar
Kim, J., Chevance, M., Kruijssen, J. M. D., et al., 2022a, MNRAS, 516, 3006 CrossRefGoogle Scholar
Koda, J. and Scoville, N. and Sawada, T., et al., 2009, ApJL, 700, 132CrossRefGoogle Scholar
Kruijssen, J. M. D., Longmore, S. N., 2014, MNRAS, 439, 3239 CrossRefGoogle Scholar
Kruijssen, J. M. D., Schruba, A., Chevance, M., et al., 2019, Nature, 569, 519 CrossRefGoogle Scholar
Kruijssen, J. M. D., Schruba, A., Hygate, A. P. S., et al., 2018, MNRAS, 479, 1866 CrossRefGoogle Scholar
Krumholz, M. R., 2014, Phys. Rep., 539, 49 CrossRefGoogle Scholar
Leroy, A. K., Schinnerer, E., Hughes, A., et al., 2021, ApJS, 257, 43 CrossRefGoogle Scholar
Lu, A. and Boyce, H. and Haggard, D., et al., 2022, MNRAS, 514, 5035CrossRefGoogle Scholar
Patra, N. N., 2020, A&A, 638, A66 Google Scholar
Scannapieco, C. and Wadepuhl, M. and Parry, O. H., et al., 2012, MNRAS, 423, 1726CrossRefGoogle Scholar
Scoville, N. Z., Hersh, K., 1979, ApJ, 229, 578CrossRefGoogle Scholar
Sun, J., Leroy, A. K., Rosolowsky, E., et al. 2022, AJ, 164, 43 CrossRefGoogle Scholar
Ward, J. L. and Kruijssen, J. M. D. and Chevance, M., et al. 2022, MNRAS, 516, 4025 CrossRefGoogle Scholar
Yim, K., Wong, T., Rand, R. J., Schinnerer, E., 2020, MNRAS, 494, 4558 CrossRefGoogle Scholar
Zabel, N. and Davis, T. A. and Sarzi, M., et al. 2020, MNRAS, 496, 2155CrossRefGoogle Scholar