Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T14:49:46.168Z Has data issue: false hasContentIssue false

Understanding the connection between the energy released during solar flares and their emission in the lower atmosphere

Published online by Cambridge University Press:  12 September 2017

F. Rubio da Costa*
Affiliation:
Department of Physics, Stanford University, Stanford, CA 94305, USA email: frubio@stanford.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

While progress has been made on understanding how energy is released and deposited along the solar atmosphere during explosive events such as solar flares, the chromospheric and coronal heating through the sudden release of magnetic energy remain an open problem in solar physics. Recent hydrodynamic models allow to investigate the energy deposition along a flare loop and to study the response of the chromosphere. These results have been improved with the consideration of transport and acceleration of particles along the loop. RHESSI and Fermi/GBM X-ray and gamma-ray observations help to constrain the spectral properties of the injected electrons. The excellent spatial, spectral and temporal resolution of IRIS will also help us to constrain properties of explosive events, such as the continuum emission during flares or their emission in the chromosphere.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Abbett, W. P. & Hawley, S. L., 1999, ApJ, 521, 906 Google Scholar
Allred, J. C., Hawley, S. L., Abbett, W. P., & Carlsson, M., 2005, ApJ, 630, 573 Google Scholar
Allred, J. C., Kowalski, A. F., & Carlsson, M., 2015, ApJ, 809, 104 Google Scholar
Aschwanden, M. J., Holman, G., O’Flannagain, A., et al. 2016, ApJ, 832, 27 CrossRefGoogle Scholar
Bradshaw, S. J. & Cargill, P. J., 2013, ApJ, 770, 12 Google Scholar
Canfield, R. C. & Gayley, K. G., 1987, ApJ, 322, 999 CrossRefGoogle Scholar
Carlsson, M. & Stein, R. F., 1992, ApJ (Letters), 397, L59 CrossRefGoogle Scholar
Carlsson, M. & Stein, R. F., 1997, ApJ, 481, 500 Google Scholar
Chen, Q. & Petrosian, V., 2013, ApJ, 777, 33 Google Scholar
Emslie, A. G., 1978, ApJ, 224, 241 Google Scholar
Fisher, G. H., Canfield, R. C., & McClymont, A. N., 1985, ApJ, 289, 414 Google Scholar
Heinzel, P., Kasparova, J., Varady, M., Karlicky, M., & Moravec, Z. 2016, arXiv:1602.00016Google Scholar
Kašparová, J., Varady, M., Heinzel, P., Karlický, M., & Moravec, Z., 2009, A&A, 499, 923 Google Scholar
Kennedy, M. B., Milligan, R. O., Allred, J. C., Mathioudakis, M., & Keenan, F. P., 2015, A&A, 578, A72 Google Scholar
Kerr, G. S., Fletcher, L., Russell, A. J. B., & Allred, J. C., 2016, ApJ, 827, 101 CrossRefGoogle Scholar
Kleint, L., Heinzel, P., Judge, P., & Krucker, S., 2016, ApJ, 816, 88 Google Scholar
Kostiuk, N. D. & Pikelner, S. B., 1975, Sov. Astr., 18, 590 Google Scholar
Kowalski, A. F., Hawley, S. L., Carlsson, M., et al. 2015, Sol. Phys., 290, 3487 Google Scholar
Kowalski, A. F., Allred, J. C., Daw, A. N., Cauzzi, G., & Carlsson, M. 2016, arXiv:1609.07390Google Scholar
Kuridze, D., Mathioudakis, M., Simões, P. J. A., et al. 2015, ApJ, 813, 125 Google Scholar
Kuridze, D., Mathioudakis, M., Christian, D. J., et al. 2016, ApJ, 832, 147 Google Scholar
Leenaarts, J., Pereira, T. M. D., Carlsson, M., Uitenbroek, H., & De Pontieu, B., 2013, ApJ, 772, 90 Google Scholar
Liu, W., Petrosian, V., & Mariska, J. T., 2009, ApJ, 702, 1553 Google Scholar
Livshits, M. A., Badalian, O. G., Kosovichev, A. G., & Katsova, M. M., 1981, Sol. Phys., 73, 269 Google Scholar
Mariska, J. T., Emslie, A. G., & Li, P., 1989, ApJ, 341, 1067 CrossRefGoogle Scholar
Milligan, R. O., Gallagher, P. T., Mathioudakis, M., & Keenan, F. P., 2006, ApJL, 642, L169 Google Scholar
Milligan, R. O. & Dennis, B. R., 2009, ApJ, 699, 968 Google Scholar
Petrosian, V. & Liu, S., 2004, ApJ, 610, 550 Google Scholar
Reid, A., Mathioudakis, M., Kowalski, A., Doyle, J. G., & Allred, J. C. 2017, arXiv:1701.04213Google Scholar
Reep, J. W., Bradshaw, S. J., & McAteer, R. T. J., 2013, ApJ, 778, 76 Google Scholar
Reep, J. W. & Russell, A. J. B., 2016, ApJL, 818, L20 Google Scholar
Rubio da Costa, F., Liu, W., Petrosian, V., & Carlsson, M., 2015, ApJ, 813, 133 Google Scholar
Rubio da Costa, F., Kleint, L., Petrosian, V., Sainz Dalda, A., & Liu, W., 2015, ApJ, 804, 56 CrossRefGoogle Scholar
Rubio da Costa, F., Kleint, L., Petrosian, V., Liu, W., & Allred, J. C., 2016, ApJ, 827, 38 Google Scholar
Somov, B. V., Spektor, A. R., & Syrovatskii, S. I., 1981, Sol. Phys., 73, 145 Google Scholar
Uitenbroek, H., 2001, ApJ, 557, 389 CrossRefGoogle Scholar
Varady, M., Karlický, M., Moravec, Z., & Kašparová, J., 2014, A&A, 563, A51 Google Scholar