Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-23T11:19:24.709Z Has data issue: false hasContentIssue false

Tests and applications of nonlinear force-free field extrapolations in spherical geometry

Published online by Cambridge University Press:  18 July 2013

Y. Guo
Affiliation:
School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China email: guoyang@nju.edu.cn Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093, China
M. D. Ding
Affiliation:
School of Astronomy and Space Science, Nanjing University, Nanjing 210093, China email: guoyang@nju.edu.cn Key Laboratory of Modern Astronomy and Astrophysics (Nanjing University), Ministry of Education, Nanjing 210093, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We test a nonlinear force-free field (NLFFF) optimization code in spherical geometry with an analytical solution from Low and Lou. The potential field source surface (PFSS) model is served as the initial and boundary conditions where observed data are not available. The analytical solution can be well recovered if the boundary and initial conditions are properly handled. Next, we discuss the preprocessing procedure for the noisy bottom boundary data, and find that preprocessing is necessary for NLFFF extrapolations when we use the observed photospheric magnetic field as bottom boundaries. Finally, we apply the NLFFF model to a solar area where four active regions interacting with each other. An M8.7 flare occurred in one active region. NLFFF modeling in spherical geometry simultaneously constructs the small and large scale magnetic field configurations better than the PFSS model does.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Aly, J. J. 1989, Solar Phys., 120, 19 CrossRefGoogle Scholar
Guo, Y., Ding, M. D., Liu, Y., Sun, X. D., DeRosa, M. L., & Wiegelmann, T. 2012, Astrophys. J., 760, 47 Google Scholar
Jiang, C., Feng, X., & Xiang, C. 2012, Astrophys. J., 755, 62 Google Scholar
Lemen, J. R., Title, A. M., Akin, D. J., Boerner, P. F., Chou, C., Drake, J. F., et al. 2012, Solar Phys., 275, 17 Google Scholar
Low, B. C. & Lou, Y. Q. 1990, Astrophys. J., 352, 343 Google Scholar
Molodensky, M. M. 1969, Sov. Astronom., 12, 585 Google Scholar
Scherrer, P. H., Schou, J., Bush, R. I., Kosovichev, A. G., Bogart, R. S., Hoeksema, J. T., et al. 2012, Solar Phys., 275, 207 Google Scholar
Schrijver, C. J. & DeRosa, M. L. 2003, Solar Phys., 212, 165 Google Scholar
Tadesse, T., Wiegelmann, T., & Inhester, B. 2009, Astron. Astrophys., 508, 421 Google Scholar
van Ballegooijen, A. A. 2004, Astrophys. J., 612, 519 Google Scholar
Wheatland, M. S., Sturrock, P. A., & Roumeliotis, G. 2000, Astrophys. J., 540, 1150 Google Scholar
Wiegelmann, T. 2007, Solar Phys., 240, 227 Google Scholar
Wiegelmann, T., Inhester, B., & Sakurai, T. 2006, Solar Phys., 233, 215 Google Scholar