Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T06:19:10.389Z Has data issue: false hasContentIssue false

Synthetic activity indicators for M-type dwarf stars

Published online by Cambridge University Press:  09 September 2016

Sven Wedemeyer
Affiliation:
Institute of Theoretical Astrophysics, University of Oslo, Postboks 1029 Blindern, N-0315 Oslo, Norway email: sven.wedemeyer@astro.uio.no
Hans-Günter Ludwig
Affiliation:
ZAH-Landessternwarte, University of Heidelberg, Heidelberg, Germany email: hludwig@lsw.uni-heidelberg.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Here, we present a set of time-dependent 3D RMHD simulations of a M-dwarf star representative of AD Leo, which extend from the upper convection zone into the chromosphere. The 3D model atmospheres are characterized by a very dynamic and intermittent structure on small spatial and temporal scales and a wealth of physical processes, which by nature cannot be described by means of 1D static model atmospheres. Artificial observations of these models imply that a combination of complementary diagnostics such as Ca II lines and the continuum intensity from UV to millimeter wavelengths, probe various properties of the dynamics, thermal and magnetic structure of the photosphere and the chromosphere and thus provide measures of stellar activity, which can be compared to observations. The complicated magnetic field structure and its imprint in synthetic diagnostics may have important implications for the understanding and characterization of stellar activity and with it possibly for the evaluation of planetary habitability around active M-dwarf stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Bochanski, J. J., Hawley, S. L., Covey, K. R., et al. 2010, AJ, 139, 2679 CrossRefGoogle Scholar
Carlsson, M. 1986, Uppsala Astronomical Observatory: Report No. 33Google Scholar
Clyne, J., Mininni, P., Norton, A., & Rast, M. 2007, New J. Phys, 9 CrossRefGoogle Scholar
Dorch, S. B. F. & Ludwig, H.-G. 2002, Astronomische Nachrichten, 323, 402 3.0.CO;2-H>CrossRefGoogle Scholar
Dumusque, X., Glenday, A., Phillips, D. F., et al. 2015, ArXiv e-prints 151102267DGoogle Scholar
Freytag, B. & Höfner, S. 2008, A&A, 483, 571 Google Scholar
Freytag, B., Steffen, M., Ludwig, H.-G., et al. 2012, Journal of Computational Physics, 231, 919 CrossRefGoogle Scholar
Hallinan, G., Antonova, A., Doyle, J. G., et al. 2008, ApJ, 684, 644 CrossRefGoogle Scholar
Hawley, S. L. & Pettersen, B. R. 1991, ApJ, 378, 725 CrossRefGoogle Scholar
Kowalski, A., Hawley, S., Holtzman, J., Wisniewski, J., & Hilton, E. 2010, ApJL, 714, L98 CrossRefGoogle Scholar
Liseau, R., Vlemmings, W., Bayo, A., et al. 2015, A&A, 573, L4 Google Scholar
Ludwig, H., Allard, F., & Hauschildt, P. H. 2002, A&A, 395, 99 Google Scholar
Osten, R. A., Godet, O., Drake, S., et al. 2010, ApJ, 721, 785 CrossRefGoogle Scholar
Reiners, A. & Basri, G. 2009, ApJ, 705, 1416 CrossRefGoogle Scholar
Reiners, A. & Basri, G. 2010, ApJ, 710, 924 CrossRefGoogle Scholar
Schmidt, S. J., Prieto, J. L., Stanek, K. Z., et al. 2014, ApJL, 781, L24 CrossRefGoogle Scholar
Steffen, M., Freytag, B., & Ludwig, H.-G. 2005, in ESA Special Publication, Vol. 560, ed. F. Favata, G. A. J. Hussain, & B. Battrick, 985Google Scholar
Tremblay, P.-E., Fontaine, G., Freytag, B., et al. 2015, ApJ, 812, 19 CrossRefGoogle Scholar
Wedemeyer, S., Ludwig, H.-G., & Steiner, O. 2013, Astronomische Nachrichten, 334, 137 CrossRefGoogle Scholar
Wedemeyer-Böhm, S., Lagg, A. & Nordlund, Å. 2009, Space Sci. Rev., 144, 317 CrossRefGoogle Scholar
Wedemeyer-Böhm, S., Ludwig, H. G., Steffen, M., Leenaarts, J., & Freytag, B. 2007, A&A, 471, 977 Google Scholar
Wende, S., Reiners, A., & Ludwig, H. 2009, A&A, 508, 1429 Google Scholar
Wootten, A. & Thompson, A. R. 2009, IEEE Proceedings, 97, 1463 CrossRefGoogle Scholar