Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-20T03:30:01.168Z Has data issue: false hasContentIssue false

Synergies in extragalactic and Galactic jet research

Published online by Cambridge University Press:  24 March 2015

Gustavo E. Romero*
Affiliation:
Instituto Argentino de Radioastronomía (CCT La Plata, CONICET), C.C.5, (1894) Villa Elisa, Buenos Aires, Argentina email: romero@iar-conicet.gov.ar Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina email: romero@fcaglp.unlp.edu.ar
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The discovery of relativistic jets and superluminal sources associated with accreting X-ray binaries in the Galaxy opened new ways of investigating the physics of outflows from compact objects. The short timescales and relatively large angular sizes of Galactic jets allow to probe the physics of relativistic outflows to unprecedented details. In this article I discuss results of recent modelling of Galactic jets, covering both radiative and dynamical aspects, which can shed light on different features of their extragalactic cousins.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Abraham, Z. & Romero, G. E. 1999, A&A, 344, 61Google Scholar
Araudo, A. T., Bosch-Ramon, V., & Romero, G. E. 2009, A&A, 503, 673Google Scholar
Araudo, A. T., Bosch-Ramon, V., & Romero, G. E. 2010, A&A, 522, A97Google Scholar
Araudo, A. T., Bosch-Ramon, V., & Romero, G. E. 2011, Proceedings of Science, PoS(Texas2010)184, 7 p.Google Scholar
Araudo, A. T., Bosch-Ramon, V., & Romero, G. E. 2013, MNRAS, 436, 3626Google Scholar
Bednarek, W. & Protheroe, R. J. 1997, MNRAS, 287, L9Google Scholar
Bednarek, W. 1997, A&A, 322, 523Google Scholar
Bednarek, W. 2000, A&A, 362,646Google Scholar
Bednarek, W. 2006, MNRAS, 368, 579Google Scholar
Bednarek, W. & Giovannelli, F. 2007, A&A, 464, 437Google Scholar
Begelman, M. C., Rees, M. J., & Blandford, R. D. 1979, Nature, 279, 770Google Scholar
Blandford, R. D. & Königl, A. 1979, ApJ, 232, 34CrossRefGoogle Scholar
Bosch-Ramon, V., Romero, G. E., & Paredes, J. M. 2006, A&A, 447, 263Google Scholar
Bosch-Ramon, V. & Khangulyan, D. 2011, PASJ, 63, 1023Google Scholar
Bosch-Ramon, V., Perucho, M., & Barkov, M. V. 2012, A&A, 539, A69Google Scholar
Cerutti, B., et al. 2011, A&A, 529, A120Google Scholar
Fabrika, S. 2004, Astrophys. Space Phys. Rev., 12, 1Google Scholar
Fan, J. H., Romero, G. E., & Lin, R. G. 2001, Chinese A&A, 25, 282Google Scholar
Fender, R., et al. 2004, Nature, 427, 222Google Scholar
Gallo, E.et al. 2005, Nature, 436, 819Google Scholar
Ghisellini, G., Maraschi, L., & Treves, A. 1985, A&A, 146, 204Google Scholar
Heinz, S. 2006, ApJ, 636, 316Google Scholar
Katz, J. I. 1980, ApJ, 236, L127Google Scholar
Kaufman Bernadó, M. M., Romero, G. E., & Mirabel, I. F. 2002, A&A, 385, L10Google Scholar
Khangulyan, D. V., et al. 2013, ApJ, 774, 113Google Scholar
Kocsis, B., Haiman, Z., & Loeb, A. 2012a, MNRAS, 427, 2660Google Scholar
Kocsis, B., Haiman, Z., & Loeb, A. 2012b, MNRAS, 427, 2680Google Scholar
Komissarov, S. S. 1994, MNRAS, 269, 394Google Scholar
Larwood, J. D. 1998, MNRAS, 299, L32Google Scholar
Malzac, J. 2014, MNRAS, 443, 299Google Scholar
Marscher, A. P. 1978, ApJ, 219, 392Google Scholar
Marscher, A. P. 1980, ApJ, 235, 386CrossRefGoogle Scholar
Mirabel, I. F. & Rodríguez, L. F. 1994, Nature, 371, 46Google Scholar
Mirabel, I. F. & Rodríguez, L. F. 1999, ARAA, 37, 409CrossRefGoogle Scholar
Müller, C., et al. 2014, A&A, 569, A115Google Scholar
Orellana, M.et al. 2007, A&A, 476, 9Google Scholar
Owocki, S. P., et al. 2009, ApJ, 696, 690CrossRefGoogle Scholar
Perucho, M. & Bosch-Ramon, V. 2012, A&A, 539, 57Google Scholar
Piano, G., et al. 2012, A&A, 545, 110Google Scholar
Reynoso, M. M., Romero, G. E., & Christiansen, H. R. 2008a, MNRAS, 387, 1545Google Scholar
Reynoso, M. M., Christiansen, H. R., & Romero, G. E. 2008b, Astrop. Phys, 28, 565Google Scholar
Reynoso, M. M., Medina, M. C., & Romero, G. E. 2011, A&A, 531, A30Google Scholar
Romero, G. E., Chajet, L., Abraham, Z., & Fan, J. H. 2000, A&A, 360, 57Google Scholar
Romero, G. E., Kaufman Bernadó, M. M., & Mirabel, I. F. 2002, A&A, 393, L61Google Scholar
Romero, G. E., Torres, D. F., Kaufman Bernadó, M. M., & Mirabel, I. F. 2003, A&A, 410, 1Google Scholar
Romero, G. E. & Vila, G. S. 2008, A&A, 485, 623Google Scholar
Romero, G. E., del Valle, M. V., & Orellana, M. 2010, A&A, 518, 12Google Scholar
Romero, G. E. & Pérez, D., Vila, G. S. 2014, Int. J. Mod. Phys. (CS), 28 1460183Google Scholar
Sitarek, J. & Bednarek, W. 2010, MNRAS, 401, 1983Google Scholar
Stirling, A. M., Spencer, R. E., de la Force, C. J., et al. 2001, MNRAS, 327, 1273Google Scholar
Vila, G. S. & Romero, G. E. 2010, MNRAS, 403, 1457Google Scholar
Vila, G. S., Romero, G. E., & Casco, N. A. 2012, A&A, 538, 97Google Scholar
Zdziarski, A. A., Lubiński, P., & Sikora, M. 2012a, MNRAS, 423, 663Google Scholar
Zdziarski, A. A., et al. 2012b, MNRAS, 421, 2956Google Scholar
Zdziarski, A. A., Stawarz, L., Pjanka, P., & Sikora, M. 2014a, MNRAS, 440, 2238Google Scholar
Zdziarski, A. A., Pjanka, P., Sikora, M., & Stawarz, L. 2014b, MNRAS, 442, 3243Google Scholar