Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-08-04T23:15:17.387Z Has data issue: false hasContentIssue false

Super-active regions in solar cycle 24

Published online by Cambridge University Press:  09 September 2016

Anqin Chen
Affiliation:
Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081, PR China email: chenanqin@cma.gov.cn Key Laboratory of Solar Activity of Chinese Academy of Sciences, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, PR China email: wangjx@nao.cas.cn
Jingxiu Wang
Affiliation:
Key Laboratory of Solar Activity of Chinese Academy of Sciences, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, PR China email: wangjx@nao.cas.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Comparing with solar cycles 21-23, the level of solar activity in the current cycle is very low. So far, there have been only five SARs and 45 X class flares. The monthly smoothed total solar irradiance decreased sharply by 0.09% from the maximum of cycle 23 to the minima between cycles 23 and 24. In this contribution, we present new studies on SARs in Cycle 24. The SARs in the current cycle have relatively smaller flare index (Iflare) and composite vector field index (Icom) comparing with the SARs in cycles 22 and 23. There is a clearly linear relationship between Iflare and Icom. The emphasis of this contribution is put on the similarity and different behaviors of vector magnetic fields of the SARs in the current solar cycle and the previous ones. We try to get a satisfactory account for the general characteristics and relatively lower level of solar flare activity in Cycle 24.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Chen, A. Q., Wang, J. X., & Li, J. W., et al. 2011, A&A, 534, A47 Google Scholar
Chen, A. Q. & Wang, J. X. 2012, A&A, 543, A49 Google Scholar
Feynman, J. & Ruzmaikin, A. 2011, Solar Phys., 272, 351 CrossRefGoogle Scholar
Fröhlich, C. 2006, Space Sci. Revs, 125, 53 Google Scholar
Jin, C. L. & Wang, J. X. 2014, J. Geophys. Res., 119, 11 Google Scholar
Leka, K. D. & Barnes, G. 2007, ApJ 656, 1173 Google Scholar
Schrijver, C. J. & Title, A. M. 2011, J. Geophys. Res., 116, A04108 Google Scholar
Schrijver, C. J., Title, A. M., & Yeates, A. R., et al. 2013, J. Geophys. Res., 773, 93 Google Scholar
Schou, J., Scherrer, P. H., & Bush, R. I., et al. 2012, Solar Phys., 275, 229 Google Scholar
Solanki, S. K. & Krivova, N. A. 2011, Science, 334, 916 Google Scholar
Wang, J. X., Shi, Z. X., Wang, H. N. & , Y. P. 1996, ApJ, 456, 861 Google Scholar
Wang, J. X., Zhou, G. P., & Wen, Y. Y., et al. 2006, Chin J Astron Astrophys, 6, 247 Google Scholar
Wang, J. X., Zhang, Y. Z., & Zhou, G. P., et al. 2007, Solar Phys., 244, 75 Google Scholar
Wang, J. X., Zhang, Y. Z., & He, H., et al. 2015, Sci China-Phys Mech Astron, 58, 599601 Google Scholar
Zhang, Y. Z., Wang, J. X., & Attrill, G. D. R., et al. 2007, Solar. Phys., 241, 329 Google Scholar
Zhou, G. P., Wang, J. X. & Wang, Y. M., et al. 2007, Solar. Phys., 244, 13 Google Scholar
Zolotova, N. V., & Ponyavin, D. I. 2014, J. Geophys. Res., 119, 3281 CrossRefGoogle Scholar