Hostname: page-component-7479d7b7d-pfhbr Total loading time: 0 Render date: 2024-07-12T13:23:26.080Z Has data issue: false hasContentIssue false

Study of Spectral Energy Distributions of low-luminosity radio galaxies at z ~ 1–3: a high-z view of the host/AGN connection

Published online by Cambridge University Press:  25 July 2014

Ranieri D. Baldi
Affiliation:
SISSA, via Bonomea 265, 34136 Trieste, Italy email: rbaldi@sissa.it
Marco Chiaberge
Affiliation:
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
Alessandro Capetti
Affiliation:
INAF-Osservatorio Astronomico di Torino, Strada Osservatorio 20, 10025 Pino Torinese, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Low-luminosity radio galaxies, common in the local Universe, are associated with giant elliptical galaxies and typically with a FR I radio morphology. However, they are rare in flux-limited samples of distant radio-loud (RL) AGN due to a selection bias. Chiaberge et al. (2009) selected the first sizeable sample of FRI candidates at 1<z<3, in the COSMOS field. We study the Spectral Energy Distributions (SEDs) of this low radio power sample from the far-UV to the Mid-IR wavelengths. Our results show that the hosts of these high-z low-luminosity radio sources are old massive galaxies, similar to the local FR Is. However, for half of the sample the UV and MIR excesses indicate the possible significant contribution from star formation and/or nuclear activity, not seen in low-z FR Is. Our sources display a wide variety of properties: from possible quasars at the highest luminosities, to low-luminosity old galaxies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Baldi, R. D. & Capetti, A. 2008, A&A, 489, 989Google Scholar
Baldi, R. D. & Capetti, A. 2010, A&A 519 A48+Google Scholar
Baldi, R. D., Chiaberge, M., Capetti, A., Rodriguez-Zaurin, J., et al. 2013, ApJ, 762, 30Google Scholar
Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559Google Scholar
Best, P. N., Kauffmann, G., Heckman, T. M., et al. 2005, MNRAS, 362, 25Google Scholar
Bolzonella, M., Miralles, J., & Pelló, R. 2000, A&A, 363, 476Google Scholar
Chiaberge, M., Capetti, A., & Celotti, A. 1999, A&A, 349, 77Google Scholar
Chiaberge, M., Tremblay, G., Capetti, A., et al. 2009, ApJ, 696, 1103Google Scholar
de Koff, S., et al. 2000, ApJS, 129, 33Google Scholar
Dicken, D., Tadhunter, C., Axon, D., et al., 2010, ApJ, 722, 1333Google Scholar
Fanaroff, B. L. & Riley, J. M. 1974, MNRAS, 167, 31PGoogle Scholar
Hardcastle, M. J., Evans, D. A., & Croston, J. H. 2009, MNRAS, 396, 1929Google Scholar
lbert, O., et al. 2009, ApJ, 690, 1236Google Scholar
Maraston, C. 2005, MNRAS, 362, 799Google Scholar
Scoville, N., et al. 2007, ApJS, 172, 1Google Scholar
Smolčić, V. 2009, ApJS, 699, L43Google Scholar
Tundo, E., Tozzi, P., & Chiaberge, M. 2009, MNRAS, 420, 187Google Scholar
Zirbel, E. L. 1996, ApJ, 473, 713CrossRefGoogle Scholar