Skip to main content Accessibility help
×
Home
Hostname: page-component-79b67bcb76-5vsr4 Total loading time: 0.263 Render date: 2021-05-14T05:41:50.202Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true }

Strong-lensing of Gravitational Waves by Galaxy Clusters

Published online by Cambridge University Press:  29 January 2019

Graham P. Smith
Affiliation:
School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, England Email: gps@star.sr.bham.ac.uk
Christopher Berry
Affiliation:
School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, England Birmingham Institute of Gravitational Wave Astronomy, University of Birmingham, Birmingham, B15 2TT, England
Matteo Bianconi
Affiliation:
School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, England
Will M. Farr
Affiliation:
School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, England Birmingham Institute of Gravitational Wave Astronomy, University of Birmingham, Birmingham, B15 2TT, England
Mathilde Jauzac
Affiliation:
Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham DH1 3LE, England Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, England Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa Laboratoire d’Astrophysique École Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny CH-1290 Versoix, Switzerland
Richard Massey
Affiliation:
Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham DH1 3LE, England
Johan Richard
Affiliation:
CRAL, Observatoire de Lyon, Université Lyon 1, 9 Avenue Ch. André, 69561 Saint Genis Laval Cedex, France
Andrew Robertson
Affiliation:
Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, England
Keren Sharon
Affiliation:
Department of Astronomy, University of Michigan, 500 Church St., Ann Arbor, MI 48109USA
Alberto Vecchio
Affiliation:
School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, England Birmingham Institute of Gravitational Wave Astronomy, University of Birmingham, Birmingham, B15 2TT, England
John Veitch
Affiliation:
School of Physics and Astronomy, University of Glasgow, G12 8QQ, Scotland
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

Discovery of strongly-lensed gravitational wave (GW) sources will unveil binary compact objects at higher redshifts and lower intrinsic luminosities than is possible without lensing. Such systems will yield unprecedented constraints on the mass distribution in galaxy clusters, measurements of the polarization of GWs, tests of General Relativity, and constraints on the Hubble parameter. Excited by these prospects, and intrigued by the presence of so-called “heavy black holes” in the early detections by LIGO-Virgo, we commenced a search for strongly-lensed GWs and possible electromagnetic counterparts in the latter stages of the second LIGO observing run (O2). Here, we summarise our calculation of the detection rate of strongly-lensed GWs, describe our review of BBH detections from O1, outline our observing strategy in O2, summarize our follow-up observations of GW170814, and discuss the future prospects of detection.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2019 

References

Abbott, B. P., et al., 2016a, Astrophys. J. Lett., 818, 22CrossRefGoogle Scholar
Abbott, B. P., et al., 2016b, Phys. Rev. X, 6, 041015Google Scholar
Abbott, B. P., et al., 2017a, Phys. Rev. Lett., 118, 221101CrossRefGoogle Scholar
Abbott, B. P., et al., 2017b, Phys. Rev. Lett., 119, 141101CrossRefGoogle ScholarPubMed
Abbott, B. P., et al., 2017c, arXiv:1304.0670v4Google Scholar
Boldrin, M., et al., 2016, Mon. Not. R. Astron. Soc., 457, 2738CrossRefGoogle Scholar
Broadhurst, T., et al., 2018, arXiv:1802.05273Google Scholar
Chatziioannou, K., Yunes, N., & Cornish, N., 2012, Phys. Rev. D, 86, 022004CrossRefGoogle Scholar
Farr, W. M., et al., 2011, Astrophys. J., 741, 103CrossRefGoogle Scholar
Fohlmeister, J., et al., 2007, Astrophys. J., 662, 62CrossRefGoogle Scholar
Hilbert, S., et al., 2008, Mon. Not. R. Astron. Soc., 386, 1845CrossRefGoogle Scholar
Inada, N., et al., 2014, Astron. J., 147, 153CrossRefGoogle Scholar
Jauzac, M., et al., 2016, Mon. Not. R. Astron. Soc., 457, 2029CrossRefGoogle Scholar
Li, S.-S., et al., 2018, arXiv:1802.05089Google Scholar
Liao, K., et al., 2017, Nature Communications, 8, 1148CrossRefGoogle Scholar
LIGO Scientific Collaboration and Virgo Collaboration, 2017, GCN Circ. 21474, https://gcn.gsfc.nasa.gov/gcn3/21474.gcn3Google Scholar
LIGO Scientific Collaboration and Virgo Collaboration, 2017, GCN Circ. 21493, https://gcn.gsfc.nasa.gov/gcn3/21493.gcn3Google Scholar
Ng, K. K. J., et al., 2018, Phys. Rev. D, 97, 023012CrossRefGoogle Scholar
Oguri, M., et al., 2010, Pub. Astron. Soc. Japan, 62, 1017CrossRefGoogle Scholar
Oguri, M., et al., 2013, Mon. Not. R. Astron. Soc., 429, 482CrossRefGoogle Scholar
Rodney, S. A., et al., 2016, Astrophys. J., 820, 50CrossRefGoogle Scholar
Sharon, K., et al., 2017, Astrophys. J., 835, 5CrossRefGoogle Scholar
Smith, G. P., et al., 2009, Astrophys. J. Lett., 707, 163CrossRefGoogle Scholar
Smith, G. P., et al., 2017, GCN Circ. 21692, https://gcn.gsfc.nasa.gov/gcn3/21692.gcn3Google Scholar
Smith, G. P., et al., 2018, Mon. Not. R. Astron. Soc., 475, 3823CrossRefGoogle Scholar
Wang, Y., Stebbins, A., & Turner, E. L., 1996, Phys. Rev. Lett., 77, 2875CrossRefGoogle Scholar
You have Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Strong-lensing of Gravitational Waves by Galaxy Clusters
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Strong-lensing of Gravitational Waves by Galaxy Clusters
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Strong-lensing of Gravitational Waves by Galaxy Clusters
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *