Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T11:45:39.927Z Has data issue: false hasContentIssue false

Strong FeII emission in NLS1s: An unsolved mystery

Published online by Cambridge University Press:  10 June 2020

Swayamtrupta Panda
Affiliation:
Center for Theoretical Physics — PAS, Al. Lotników 32/46, Warsaw, Poland 02—668 Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, Warsaw, Poland 00—716
Katarzyna Małek
Affiliation:
National Center for Nuclear Research, ul. Hoża 69, Warsaw, Poland 00—681 Aix Marseille Univ. CNRS, CNES, LAM Marseille13388, France
Marzena Śniegowska
Affiliation:
Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, Warsaw, Poland 00—716
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In Panda et al.2018a, we constructed a refined sample from the original Shen et al.(2011) QSO catalog. Based on our hypothesis — the main driver of the Quasar Main Sequence is the maximum of the accretion disk temperature (TBBB) defined by the Big Blue Bump on the Spectral Energy Distribution (Panda et al.2017; Panda et al.2018b). We select the four extreme sources that have RFeII ⩾ 4.0 and use {CIGALE (Boquien et al.2018) to fit their multi—band photometric data. We also perform detailed spectral fitting including the Fe II pseudo—continuum (based on Śniegowska et al.2018)) to estimate and compare the value of RFEII. We show the dependence of FeII strength on changing metallicity.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Boquien, M., Burgarella, D., Roehlly, Y., Buat, V., Ciesla, L., Corre, D., Inoue, A. K. & Salas, H. 2018. CIGALE: a python Code Investigating GALaxy Emission. arXiv:1811.0309410.1051/0004-6361/201834156CrossRefGoogle Scholar
Bruzual, G. & Charlot, S. 2003. Stellar population synthesis at the resolution of 2003. MNRAS 344(4), 1000102810.1046/j.1365-8711.2003.06897.xCrossRefGoogle Scholar
Calzetti, D., Armus, L., Bohlin, R. C., Kinney, A. L., Koornneef, J., & Storchi-Bergmann, T. 2000. The Dust Content and Opacity of Actively Star-forming Galaxies. ApJ 533(2), 68269510.1086/308692CrossRefGoogle Scholar
Draine, B. T., Aniano, G., Krause, O., Groves, B., Sandstrom, K., Braun, R., Leroy, A., Klaas, U., et al. 2014. Andromeda’s Dust. ApJ 780(2), 17219010.1088/0004-637X/780/2/172CrossRefGoogle Scholar
Ferland, G. J., Chatzikos, M., Guzmán, F., Lykins, M. L., van Hoof, P. A. M., Williams, R. J. R., Abel, N. P., et al. 2017. The 2017 Release Cloudy. RMxAA 53, 385438Google Scholar
Fritz, J., Franceschini, A., & Hatziminaoglou, E. 2006. Revisiting the infrared spectra of active galactic nuclei with a new torus emission model. MNRAS 366(3), 76778610.1111/j.1365-2966.2006.09866.xCrossRefGoogle Scholar
Panda, S., Czerny, B., & Wildy, C. 2017. The physical driver of the optical Eigenvector 1 in Quasar Main Sequence. FrASS 4, 33Google Scholar
Panda, S., Małek, K., Śniegowska, M., & Czerny, B. 2018a. Using vo tools to investigate Quasar Spectra (UNIQS). In: M. Berton, (Ed.), 2018. Revisiting narrow-line Seyfert 1 galaxies and their place in the Universe. Padova (Italy): Proceedings of Science. 5010.22323/1.328.0050CrossRefGoogle Scholar
Panda, S., Czerny, B., Adhikari, T. P., Hryniewicz, K., Wildy, C., Kuraszkiewicz, J., & Śniegowska, M. 2018b. Modeling of the Quasar Main Sequence in the Optical Plane. ApJ 866(2), 11512810.3847/1538-4357/aae209CrossRefGoogle Scholar
Shen, Y., Richards, G. T., Strauss, M. A., Hall, P. B., Schneider, D. P., Snedden, S., Bizyaev, D., Brewington, H., et al. 2011. A Catalog of Quasar Properties from Sloan Digital Sky Survey Data Release 7. ApJS 194(2), 456610.1088/0067-0049/194/2/45CrossRefGoogle Scholar
Śniegowska, M., Czerny, B., You, B., Panda, S., Wang, J.-M., Hryniewicz, K., & Wildy, C. 2018. Properties of active galaxies at the extreme of Eigenvector 1. A&A 613, A38Google Scholar