Skip to main content Accessibility help
×
Home

Stellar yields for chemical evolution modelling

Published online by Cambridge University Press:  06 January 2014

Amanda I. Karakas
Affiliation:
Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia email: amanda.karakas@anu.edu.au
Corresponding
E-mail address:
Rights & Permissions[Opens in a new window]

Abstract

Stellar yields are a key ingredient in chemical evolution models. Stars with masses as low as 0.9M, which have an age less than that of our Galaxy at low metallicity, can contribute to the chemical evolution of elements. Stars less than about 8–10M experience recurrent mixing events that can significantly change the surface composition of the envelope. Evolved stars are observed with surface enrichment in carbon, nitrogen, fluorine, and heavy elements synthesized by the slow neutron capture process (the s-process). These stars release their nucleosynthesis products through stellar outflows or winds, in contrast to massive stars that explode as core-collapse supernovae. Here I review stellar yields for stars up to 10M, including a brief discussion of their uncertainties and shortcomings. Finally, I discuss efforts by various groups to address these issues and to provide homogeneous yields for low and intermediate-mass stars covering a broad range of metallicities.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Abia, C., Busso, M., Gallino, R., Domínguez, I., Straniero, O., & Isern, J. 2001, ApJ, 559, 1117CrossRefGoogle Scholar
Abia, C. & Isern, J. 1997, MNRAS, 289, L11CrossRefGoogle Scholar
Angelou, G. C., Stancliffe, R. J., Church, R. P., Lattanzio, J. C., & Smith, G. H. 2012, ApJ, 749, 128CrossRefGoogle Scholar
Beers, T. C. & Christlieb, N. 2005, ARA&A, 43, 531CrossRefGoogle Scholar
Boothroyd, A. I. & Sackmann, I.-J. 1999, ApJ, 510, 232CrossRefGoogle Scholar
Busso, M., Gallino, R., & Wasserburg, G. J. 1999, ARA&A, 37, 239CrossRefGoogle Scholar
Busso, M., Palmerini, S., Maiorca, E., Cristallo, S., Straniero, O., Abia, C., Gallino, R. & La Cognata, M. 2010, ApJ, 717, L47CrossRefGoogle Scholar
Busso, M., Wasserburg, G. J., Nollett, K. M., & Calandra, A. 2007, ApJ, 671, 802CrossRefGoogle Scholar
Charbonnel, C. 1995, ApJ, 453, L41CrossRefGoogle Scholar
Charbonnel, C. & Zahn, J.-P. 2007, A&A, 467, L15Google Scholar
Cristallo, S., Piersanti, L., Straniero, O., Gallino, R., Domínguez, I., Abia, C., Di Rico, G., Quintini, M., & Bisterzo, S. 2011, ApJS, 197, 17CrossRefGoogle Scholar
Cristallo, S., Straniero, O., Gallino, R., Piersanti, L., Domínguez, I., & Lederer, M. T. 2009, ApJ, 696, 797CrossRefGoogle Scholar
De Smedt, K., Van Winckel, H., Karakas, A. I., Siess, L., Goriely, S., & Wood, P. R. 2012, A&A, 541, A67Google Scholar
Denissenkov, P. A. & Pinsonneault, M. 2008, ApJ, 684, 626CrossRefGoogle Scholar
Denissenkov, P. A. & Tout, C. A. 2000, MNRAS, 316, 395CrossRefGoogle Scholar
Doherty, C. L., Siess, L., Lattanzio, J. C., & Gil-Pons, P. 2010, MNRAS, 401, 1453CrossRefGoogle Scholar
Eggleton, P. P., Dearborn, D. S. P., & Lattanzio, J. C. 2006, Science, 314, 1580CrossRefGoogle Scholar
Fenner, Y., Gibson, B. K., Lee, H.-c., Karakas, A. I., Lattanzio, J. C., Chieffi, A., Limongi, M., & Yong, D. 2003, PASA, 20, 340CrossRefGoogle Scholar
Forestini, M. & Charbonnel, C. 1997, A&AS, 123, 241Google Scholar
Freeman, K. & Bland-Hawthorn, J. 2002, ARA&A, 40, 487CrossRefGoogle Scholar
Frost, C. A., Cannon, R. C., Lattanzio, J. C., Wood, P. R., & Forestini, M. 1998, A&A, 332, L17Google Scholar
Frost, C. A. & Lattanzio, J. C. 1996, ApJ, 473, 383CrossRefGoogle Scholar
Gallino, R., Arlandini, C., Busso, M., Lugaro, M., Travaglio, C., Straniero, O., Chieffi, A., & Limongi, M. 1998, ApJ, 497, 388CrossRefGoogle Scholar
García-Hernández, D. A., García-Lario, P., Plez, B., D'Antona, F., Manchado, A., & Trigo-Rodríguez, J. M. 2006, Science, 314, 1751CrossRefGoogle Scholar
García-Hernández, D. A., Manchado, A., Lambert, D. L., Plez, B., García-Lario, P., D'Antona, F., Lugaro, M., Karakas, A. I., & van Raai, M. A. 2009, ApJ, 705, L31CrossRefGoogle Scholar
Gil-Pons, P., Gutiérrez, J., & García-Berro, E. 2007, A&A, 464, 667Google Scholar
Gil-Pons, P., Suda, T., Fujimoto, M. Y., & García-Berro, E. 2005, A&A, 433, 1037Google Scholar
Gilroy, K. K. 1989, ApJ, 347, 835CrossRefGoogle Scholar
Hansen, C. J., Bergemann, M., Cescutti, G., François, P., Arcones, A., Karakas, A. I., Lind, K., & Chiappini, C. 2013, A&A, 551, A57Google Scholar
Herwig, F. 2000, A&A, 360, 952Google Scholar
Herwig, F. 2005, ARA&A, 43, 435CrossRefGoogle Scholar
Herwig, F., VandenBerg, D. A., Navarro, J. F., Ferguson, J., & Paxton, B. 2012, ApJ, 757, 132CrossRefGoogle Scholar
Imbriani, G., Limongi, M., Gialanella, L., Terrasi, F., Straniero, O., & Chieffi, A. 2001, ApJ, 558, 903CrossRefGoogle Scholar
Izzard, R. G., Glebbeek, E., Stancliffe, R. J., & Pols, O. R. 2009, A&A, 508, 1359Google Scholar
Izzard, R. G., Lugaro, M., Karakas, A. I., Iliadis, C., & van Raai, M. 2007, A&A, 466, 641Google Scholar
Izzard, R. G., Tout, C. A., Karakas, A. I., & Pols, O. R. 2004, MNRAS, 350, 407CrossRefGoogle Scholar
Kalirai, J. S., Hansen, B. M. S., Kelson, D. D., Reitzel, D. B., Rich, R. M., & Richer, H. B. 2008, ApJ, 676, 594CrossRefGoogle Scholar
Kamath, D., Karakas, A. I., & Wood, P. R. 2012, ApJ, 746, 20CrossRefGoogle Scholar
Karakas, A. I. 2010, MNRAS, 403, 1413CrossRefGoogle Scholar
Karakas, A. I., Campbell, S. W., & Stancliffe, R. J. 2010, ApJ, 713, 374CrossRefGoogle Scholar
Karakas, A. I., García-Hernández, D. A., & Lugaro, M. 2012, ApJ, 751, 8CrossRefGoogle Scholar
Karakas, A. I. & Lattanzio, J. C. 2003a, PASA, 20, 393CrossRefGoogle Scholar
Karakas, A. I. & Lattanzio, J. C. 2003b, PASA, 20, 279CrossRefGoogle Scholar
Karakas, A. I. & Lattanzio, J. C. 2007, PASA, 24, 103CrossRefGoogle Scholar
Karakas, A. I., Lattanzio, J. C., & Pols, O. R. 2002, PASA, 19, 515CrossRefGoogle Scholar
Karakas, A. I., Lugaro, M., Wiescher, M., Goerres, J., & Ugalde, C. 2006, ApJ, 643, 471CrossRefGoogle Scholar
Kobayashi, C., Karakas, A. I., & Umeda, H. 2011, MNRAS, 414, 3231CrossRefGoogle Scholar
Lagarde, N., Decressin, T., Charbonnel, C., Eggenberger, P., Ekström, S., & Palacios, A. 2012a, A&A, 543, A108Google Scholar
Lagarde, N., Romano, D., Charbonnel, C., Tosi, M., Chiappini, C., & Matteucci, F. 2012b, A&A, 542, A62Google Scholar
Lattanzio, J. C. 1992, PASA, 10, 120CrossRefGoogle Scholar
Lattanzio, J. C. & Lugaro, M. A. 2005, Nuclear Physics A, 758, 477CrossRefGoogle Scholar
Lederer, M. T. & Aringer, B. 2009, A&A, 494, 403Google Scholar
Lind, K., Primas, F., Charbonnel, C., Grundahl, F., & Asplund, M. 2009, A&A, 503, 545Google Scholar
Lugaro, M., Karakas, A. I., Stancliffe, R. J., & Rijs, C. 2012, ApJ, 747, 2CrossRefGoogle Scholar
Marigo, P. 2001, A&A, 370, 194Google Scholar
Marigo, P. 2002, A&A, 387, 507Google Scholar
Marigo, P. & Aringer, B. 2009, A&A, 508, 1539Google Scholar
Merrill, S. P. W. 1952, ApJ, 116, 21CrossRefGoogle Scholar
Mowlavi, N. 1999, A&A, 344, 617Google Scholar
Nollett, K. M., Busso, M., & Wasserburg, G. J. 2003, ApJ, 582, 1036CrossRefGoogle Scholar
Nomoto, K. 1984, ApJ, 277, 791CrossRefGoogle Scholar
Palmerini, S., Busso, M., Maiorca, E., & Guandalini, R. 2009, Publications of the Astronomical Society of Australia, 26, 161CrossRefGoogle Scholar
Poelarends, A. J. T., Herwig, F., Langer, N., & Heger, A. 2008, ApJ, 675, 614CrossRefGoogle Scholar
Pols, O. R., Izzard, R. G., Stancliffe, R. J., & Glebbeek, E. 2012, A&A, 547, A76Google Scholar
Pumo, M. L., D'Antona, F., & Ventura, P. 2008, ApJ, 672, L25CrossRefGoogle Scholar
Ritossa, C., Garcia-Berro, E. & Iben, I. Jr. 1996, ApJ, 460, 489CrossRefGoogle Scholar
Ritossa, C., García-Berro, E. & Iben, I. Jr. 1999, ApJ, 515, 381CrossRefGoogle Scholar
Romano, D., Karakas, A. I., Tosi, M., & Matteucci, F. 2010, A&A, 522, A32Google Scholar
Siess, L. 2006, A&A, 448, 717Google Scholar
Siess, L. 2010, A&A, 512, A10Google Scholar
Sivarani, T., Beers, T. C., Bonifacio, P., Molaro, P., Cayrel, R., Herwig, F., Spite, M., Spite, F., Plez, B., Andersen, J., Barbuy, B., Depagne, E., Hill, V., François, P., Nordström, B., & Primas, F. 2006, A&A, 459, 125Google Scholar
Smiljanic, R., Gauderon, R., North, P., Barbuy, B., Charbonnel, C., & Mowlavi, N. 2009, A&A, 502, 267Google Scholar
Smith, G. H. 2002, Publ. Astron. Soc. Pac., 114, 1097CrossRefGoogle Scholar
Smith, G. H. & Tout, C. A. 1992, MNRAS, 256, 449CrossRefGoogle Scholar
Smith, V. V. & Lambert, D. L. 1989, ApJ, 345, L75CrossRefGoogle Scholar
Smith, V. V. & Lambert, D. L. 1990, ApJS, 72, 387CrossRefGoogle Scholar
Sneden, C., Cowan, J. J., & Gallino, R. 2008, ARA&A, 46, 241CrossRefGoogle Scholar
Stancliffe, R. J. 2010, MNRAS, 403, 505CrossRefGoogle Scholar
Stancliffe, R. J., Church, R. P., Angelou, G. C., & Lattanzio, J. C. 2009, MNRAS, 396, 2313CrossRefGoogle Scholar
Stancliffe, R. J. & Jeffery, C. S. 2007, MNRAS, 375, 1280CrossRefGoogle Scholar
Sterling, N. C. & Dinerstein, H. L. 2008, ApJS, 174, 158CrossRefGoogle Scholar
Sweigart, A. V. & Mengel, J. G. 1979, ApJ, 229, 624CrossRefGoogle Scholar
Takahashi, K., Yoshida, T., & Umeda, H. 2013, ApJ, 771, 28CrossRefGoogle Scholar
Travaglio, C., Gallino, R., Arnone, E., Cowan, J., Jordan, F., & Sneden, C. 2004, ApJ, 601, 864CrossRefGoogle Scholar
Travaglio, C., Gallino, R., Busso, M., & Gratton, R. 2001, ApJ, 549, 346CrossRefGoogle Scholar
van den Hoek, L. B. & Groenewegen, M. A. T. 1997, A&AS, 123, 305Google Scholar
van Loon, J. T., Zijlstra, A. A., & Groenewegen, M. A. T. 1999, A&A, 346, 805Google Scholar
van Winckel, H. 2003, ARA&A, 41, 391CrossRefGoogle Scholar
Ventura, P. & D'Antona, F. 2005a, A&A, 431, 279Google Scholar
Ventura, P. & D'Antona, F. 2005b, A&A, 439, 1075Google Scholar
Ventura, P., Di Criscienzo, M., Carini, R., & D'Antona, F. 2013, MNRAS, 431, 3642CrossRefGoogle Scholar
Ventura, P. & Marigo, P. 2009, MNRAS, 399, L54CrossRefGoogle Scholar
Ventura, P. & D'Antona, F. 2010, MNRAS, 408, 2476CrossRefGoogle Scholar
Wanajo, S., Janka, H.-T., & Müller, B. 2011, ApJ, 726, L15CrossRefGoogle Scholar
Wanajo, S., Nomoto, K., Janka, H.-T., Kitaura, F. S., & Müller, B. 2009, ApJ, 695, 208CrossRefGoogle Scholar
Weiss, A. & Ferguson, J. W. 2009, A&A, 508, 1343Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 96 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 26th January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-898fc554b-pkmq7 Total loading time: 0.29 Render date: 2021-01-26T00:33:07.696Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Stellar yields for chemical evolution modelling
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Stellar yields for chemical evolution modelling
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Stellar yields for chemical evolution modelling
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *